Меню

Возникновение потенциала действия в сердечной мышце

Возникновение потенциала действия в сердечной мышце

Потенциал действия, зарегистрированный в мышечном волокне желудочка сердца. Потенциал действия формируется от уровня -85 мВ (потенциал покоя) до значения +20 мВ (пик потенциала). За пиком потенциала следует фаза плато, в течение которой мембрана остается деполяризованной примерно 0,2 сек. Затем развивается быстрая реполяризация. Наличие фазы плато способствует увеличению продолжительности периода сокращения желудочков в 15 раз по сравнению со скелетной мышцей.

Что является причиной большой длительности потенциала действия и фазы плато? Мы вправе задать вопрос: почему потенциал действия сердечной мышцы такой продолжительный и почему он имеет фазу плато в отличие от скелетной мышцы? В основе длительного потенциала действия и фазы плато кардиомиоцитов лежат два главных различия в свойствах мембраны волокон сердечной и скелетной мышц. Во-первых, потенциал действия скелетной мышцы вызван активацией так называемых быстрых натриевых каналов, по которым огромное количество ионов натрия входит из внеклеточной жидкости внутрь мышечного волокна. Эти каналы называют быстрыми, т.к. они остаются открытыми лишь несколько тысячных долей секунды, а потом мгновенно закрываются. С этого момента развивается реполяризация, и в следующую тысячную долю секунды потенциал действия завершается.

Потенциал действия сердечной мышцы вызван активацией двух типов ионных каналов: (1) быстрых натриевых каналов, как и в скелетных мышцах; (2) медленных кальциевых каналов^ которые также называют кальций-натриевыми каналами. Второй тип каналов отличается тем, что они медленно открываются и, что особенно важно, долго остаются открытыми (в течение несколько десятых долей секунды). Все это время ионы кальция и натрия диффундируют внутрь сердечных волокон и поддерживают длительную деполяризацию мембраны, или фазу плато потенциала действия. Более того, ионы кальция, входящие в сердечные волокна во время фазы плато, участвуют в процессе мышечного сокращения, в то время как ионы кальция, необходимые для сокращения скелетных мышц, поступают в саркоплазму только из внутриклеточного саркоплазматического ретикулума.

Второе важное функциональное различие между волокнами сердечной и скелетной мышц: сразу после начала потенциала действия проницаемость мембраны кардиомиоцитов для ионов калия уменьшается примерно в 5 раз (такое явление в волокнах скелетных мышц отсутствует). Уменьшение калиевой проницаемости, возможно, происходит за счет избыточного притока в клетку ионов кальция через кальциевые каналы. В любом случае снижение проницаемости мембраны для калия существенно уменьшает выход этих положительных ионов из клетки во время фазы плато и, следовательно, препятствует слишком быстрому возвращению мембранного потенциала к уровню покоя. Когда же к концу 0,2-0,3 сек медленные кальциевые каналы закрываются и входящий ток ионов кальция и натрия прекращается, проницаемость мембраны для ионов калия быстро возрастает, поэтому выходящий калиевый ток немедленно возвращает мембранный потенциал к уровню покоя, и потенциал действия завершается.

Скорость проведения импульса в сердечной мышце. Скорость проведения потенциала действия по мышечным волокнам как предсердий, так и желудочков составляет 0,3-0,5 м/сек (что в 250 раз меньше скорости проведения в толстых нервных волокнах и в 10 раз меньше скорости проведения в волокнах скелетных мышц). С другой стороны, скорость проведения возбуждения в волокнах проводящей системы сердца (волокнах Пуркинье) достигает 4 м/сек, что обеспечивает быстрый охват возбуждением миокарда желудочков.

Рефрактерный период сердечной мышцы. Сердечная мышца, как и все возбудимые ткани, невосприимчива к действию повторных стимулов, поступающих к ней во время потенциала действия (т.е. обладает рефрактерностью). Рефрактерный период сердца — это интервал времени, в течение которого новый сердечный импульс не может вызвать повторную генерацию потенциала действия во все еще возбужденных мышечных волокнах. В норме рефрактерный период желудочков продолжается 0,25-0,30 сек и почти полностью совпадает с длительностью фазы плато потенциала действия. За ним следует относительный рефрактерный период продолжительностью около 0,05 сек. Во время относительной рефрактерности миокард может возбуждаться, но только под действием очень сильного раздражителя. Это приводит к развитию раннего внеочередного сокращения. Рефрактерный период миокарда предсердий значительно короче и продолжается примерно 0,15 сек.

источник

Физиологические свойства сердечной мышцы

1. Возбудимость. Уровень возбудимости сердечной мышцы в различные фазы кардиоцикла меняется. Раздражение сердечной мышцы в фазу ее сокращения (систолу) не вызывает нового сокращения, даже при действии сверхпорогового раздражителя. В этот период сердечная мышца находится в фазе абсолютной рефрактерности, ее длительность составляет 0,27 с.

В конце систолы и начале диастолы (расслабления сердечной мышцы) возбудимость начинает восстанавливаться до исходного уровня — фаза относительной рефрактерности (0,03 с). За фазой относительной рефрактерности следует фаза экзальтации (0,05 с), после которой возбудимость сердечной мышцы окончательно возвращается к исходному уровню (рис. 20). Следовательно, особенностью возбудимости сердечной мышцы является длительный период рефрактерности (0.3 с).

Рис.20.Соотношение кривой одиночного сокращения (А) и фаз возбудимости сердечной мышцы (Б). АРП — фаза абсолютной рефрактерности; ОРП — фаза относительной рефрактерности; СН — фаза экзальтации. Цифрами обозначена длительность фаз сердечного цикла и возбудимости.

Фазы возбудимости сердечной мышцы определяются фазами одиночного цикла возбуждения. Мембранный потенциал покоя миокардиальных клеток имеет величину 90 мВ и формируется в основном ионами калия. Потенциал действия миокарда желудочков имеет следующие фазы (рис. 21).

Рис. 21. Потенциал действия одиночной клетки миокарда желудочка: 1 — быстрая деполяризация; 2 — начальная быстрая реполяризация; 3 — медленная реполяризация (плато); 4 — конечная быстрая реполяризация.

Стрелками показаны преобладающие потоки ионов, ответственных за формирование различных фаз потенциала действия.

1 Фаза — (быстрая деполяризация) обусловлена последовательным открытием быстрых натриевых и медленных натрий-кальциевых каналов. Быстрые натриевые каналы открываются при деполяризации мебраны до уровня -70 мВ, закрываются при деполяризации мембраны до -40 мВ. Натрий-кальциевые каналы открываются при деполяризации мембраны до -40 мВ и закрываются при исчезновении поляризации мембраны. За счет открытия этих каналов происходит реверсия потенциала мембраны до + 30-40 мВ.

2 фаза — (начальная быстрая реполяризация) обусловлена повышением проницаемости мембраны для ионов хлора.

3 фаза — (медленная реполяризация или плато) обусловлена взаимодействием двух ионных токов: медленного натрий-кальциевого (деполяризующего) и медленного калиевого (реполяризующего) через специальные медленные калиевые каналы (каналы аномального выпрямления).

4 фаза — (конечная быстрая реполяризация). Эта фаза обусловлена закрытием кальциевых каналов и активацией быстрых калиевых каналов.

Ионные каналы мембраны кардиомиоцита представлены потенциалозависимыми белками, поэтому их активация (открытие) и инактивация (закрытие) обусловливаются определенной величиной поляризации мембраны (величиной трансмембранного потенциала).

Раздражение сердца во время диастолы вызывает внеочередное сокращение — экстрасистолу. Различают синусовую, предсердную и желудочковую экстрасистолы. Желудочковая экстрасистола отличается тем, что за ней всегда следует более продолжительная, чем обычно, пауза, называемая компенсаторной паузой (рис. 22) . Она возникает в результате выпадения очередного нормального сокращения, т. к. импульс возбуждения, возникший в сино-атриальном узле, поступает к миокарду желудочков, когда они еще находятся в состоянии рефрактерности, возникшей в период экстрасистолического сокращения. При синусовых и предсердных экстрасистолах компенсаторная пауза отсутствует.

Рис. 22. Экстрасистола и компенсаторная пауза. I — момента поступления имульсов из сино-атриального узла; 1,2,3-моменты нанесения экстрараздражений; 4 — экстрасистола; 5 — компенсаторная пауза; 6 — выпавшее очередное сокращение (обозначено пунктиром). II — кардиограмма лягушки с экстрасистолами.

2. Сократимость. Сердечная мышца реагирует на раздражители нарастающей силы по закону «все или ничего». Это обусловлено ее морфологическими особенностями. Между отдельными мышечными клетками сердечной мышцы имеются так называемые вставочные диски, или участки плотных контактов — нексусы, образованные участками плазматических мембран двух соседних миокардиальных клеток. В некоторых участках плазматические мембраны, образующие контакт, прилегают друг к другу так близко, что кажутся слившимися. Мембраны на уровне вставочных дисков обладают очень низким электрическим сопротивлением и поэтому возбуждение распространяется от волокна к волокну беспрепятственно, охватывая миокард целиком. Поэтому сердечную мышцу, состоящую из морфологически разъединенных, но функционально объединенных мышечных волокон, принято считать функциональным синцитием.

Сердечная мышца сокращается по типу одиночного сокращения, т. к. длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения (систолу), фазу расслабления (диастолу).

Способность сердечной мышцы сокращаться только по тину одиночного сокращения обеспечивает выполнение сердцем основной гемодинамической функции — насоса. Сокращения сердца по типу тетануса делали бы невозможным ритмическое нагнетание крови в кровеносные сосуды. Именно это и происходит при фибрилляции волокон миокарда и мерцательной аритмии сердца.

Серию последовательных явлений в клетке миокарда, начинающихся с пускового механизма сокращения — потенциала действия (ПД) и завершающихся укорочением миофибрилл, называют сопряжением возбуждения и сокращения. При распространении ПД по мембране ионы кальция поступают к сократительным белкам, в основном, из межклеточного пространства и вызывают те же процессы взаимодействия актиновых и миозиновых протофибрилл, что и в скелетном мышечном волокне. Расслабление кардиомиоцита также обусловлено удалением кальция кальциевым насосом из протофибриллярного пространства в межклеточную среду.

Важным процессом в сокращении кардиомиоцита является вход ионов кальция в клетку во время ПД. Наряду с тем, что входящий в клетку кальций увеличивает длительность ПД и, как следствие, продолжительность рефракторного периода, он является важнейшим фактором в регуляции силы сокращения сердечной мышцы.

Так, удаление ионов кальция из межклеточных пространств приводит к полному разобщению процессов возбуждения и сокращения — потенциал действия остается практически в неизменном виде, а сокращения кардиомиоцита не происходит.

3. Проводимость. По миокарду и проводящей системе сердца возбуждение распространяется с различной скоростью: по миокарду предсердий — 0,8-1,0 м/с, по миокарду желудочков — 0,8-0,9 м/с, по различным отделам проводящей системы — 2,0-4,0 м/с. При прохождении возбуждения через атрио-вентрикулярный узел возбуждение задерживается на 0,02-0,04 с — это так называемая атрио-вентрикулярная задержка. Она обеспечивает координацию (последовательность) сокращения предсердий и желудочков и позволяет предсердиям нагнетать дополнительную порцию крови в полости желудочков до начала их сокращения.

4. Автоматизм. Сердечная мышца обладает автоматизмом — способностью возбуждаться без видимых причин, т. е. как бы самопроизвольно. Изучение автоматизма сердечной мышцы проводилось в двух направлениях:

• поиск субстрата автоматизма, т. е. тех структур, которые реализуют это свойство;

• изучение природы автоматизма, т. е. механизмов, лежащих в его основе.

По вопросу о субстрате автоматизма существовало две группы теорий:

• нейрогенная — субстратом автоматизма является нервная ткань;

Советуем прочитать:  Хорошая программа в тренажерный зал на все мышцы

• миогенная — сама сердечная мышца.

К настоящему времени установлено, что выраженной способностью к автоматии обладают мало дифференцированные атипические мышечные волокна, которые образуют так называемую проводящую систему сердца. Проводящая система включает в себя главные узлы автоматизма: сино-атриальный, расположенный в стенке правого предсердия между местом впадения верхней полой вены и правым ушком; атрио-вентрикулярный узел, расположенный в межпредсердной перегородке на границе предсердий и желудочков. В состав проводящей системы сердца взводят также пучок Гиса, который начинается от атрио-вентрикулярного узла, затем разделяется на правую и левую ножки, идущие к желудочкам. Ножки пучка Гиса разделяются на более тонкие проводящие пути, заканчивающиеся волокнами Пуркинье, которые контактируют с клетками сократительного миокарда.

Способность к автоматизму различных отделов проводящей системы сердца изучалась Станниусом путем последовательного Наложения на сердце лигатур. Было установлено, что в обычных условиях генератором возбуждения в сердце является сино-атриальный узел — водитель ритма (пейсмекер) сердца I порядка. Атрио-вентрикулярный узел является водителем ритма сердца II порядка, т. к. его способность к автоматизму примерно в 2 раза меньше, чем у сино-атриального узла. Автоматизм волокон пучка Гиса еще меньше и, наконец, волокна Пуркинье обладают наименьшей способностью к автомат™. Следовательно, существует градиент автоматизма — уменьшение способности к автоматизму различных отделов проводящей системы сердца по мере их удаления от сино-атриального узла к верхушке сердца.

Природу автоматизма пытались объяснить воздействием на клетки проводящей системы сердца эндогенных и экзогенных факторов, отсюда и теории — эндогенная и экзогенная. Эндогенные факторы возникают в самом сердце:

• накопление какого-то вещества (например, ацетилхолин, молочная и угольная кислоты и др.);

• изменение электрического поля сердца во время диастолы и др.

Экзогенные факторы автоматизма находятся за пределами сердца или поступают к нему извне с током крови и могут иметь также самую разнообразную природу.

Физиологической основой автоматизма сердечной мышцы является низкая скорость ее аккомодации: при действии постепенно нарастающего по силе раздражителя порог возбудимости у сердечной мышцы почти не изменяется. Микроэлектродные исследования показали, что в клетках рабочего миокарда предсердий и желудочков мембранный потенциал покоя в интервалах между возбуждениями поддерживается на постоянном уровне. В клетках же сино-атриального узла мембранный потенциал покоя нестабилен — в период диастолы происходит постепенное его уменьшение, которое называется медленной диастолической деполяризацией (МДД). Она является начальным компонентом потенциала действия пейсмекерных клеток. При достижении МДД критического уровня деполяризации возникает потенциал действия пейсмекерной клетки, который затем распространяется по проводящей системе к миокарду предсердий и желудочков. После окончания потенциала действия вновь развивается МДД (рис. 23).

Рис. 23. Потенциал действия клеток сино-атриального узла. Стрелками показана МДД.

Ионный механизм МДД состоит в том, что во время реполяризации клеточная мембрана сохраняет относительно высокую натриевую проницаемость. В результате проникновения внутрь клетки ионов натрия и уменьшения скорости выхода из клетки ионов калия возникает МДД. Уменьшение потенциала покоя до -40 мВ приводит к открытию медленных натрий-кальциевых каналов, что приводит к возникновению быстрой деполяризации. Реполяризация обеспечивается открытием калиевых каналов. В отличие от клеток водителей ритма рабочие клетки миокарда в состоянии покоя характеризуются очень низкой проницаемостью для ионов натрия, поэтому сдвигов мембранного потенциала в них не возникает.

Как видно из рис. 23, форма потенциала действия пейсмекерной клетки сино-атриального узла отличается от формы потенциала действия сократительных кардиомиоцитов. Во-первых, для пейсмекерных клеток характерно наличие МДД. Во-вторых, МДД медленно, плавно (особенно у клеток сино-атриального узла) переходит в фазу быстрой деполяризации. В-третьих, у ПД пеисмекерных клеток нет плато реполяризации. В-четвертых, у пеисмекерных клеток отсутствует овершут (потенциал превышения). В-пятых, МПП у пейсмекерных клеток значительно ниже (-55-60 мВ), чем МПП сократительных кардиомиоцитов (-90 мВ).

Не нашли то, что искали? Воспользуйтесь поиском:

источник

ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону “все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) (“ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением (“все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название “лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-1 м/с, по миокарду желудочков — 0,8-0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-0,05 м/с, что почти в 20-50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12-0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.

· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы. По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность. В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза (рис.9.).

Рис. 9. Экстрасистола а и удлиненная пауза б

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка–Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким–либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно–гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердечной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен — синоатриальный узел.

Рис. 10. Проводящая система сердца:

а — синоатриальный узел; б — предсердно-желудочковый узел; в — пучок Гиса; г — волокна Пуркинье.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом. От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Советуем прочитать:  Упражнения с роликом для всех групп мышц

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

Долгое время в объяснении природы автоматии существовало две теории — нейрогенная и миогенная. Представители первой теории считали, что в основе автоматии лежат нервные структуры сердца, а представители второй теории связывали автоматию со способностью к ней мышечных элементов.

Взгляды на автоматию получили новые направления в связи с открытием проводящей системы сердца. В настоящее время способность к автоматической генерации импульсов в настоящее время связывают с особыми Р-клетками, входящими в состав синоатриального узла. Многочисленными и разнообразными опытами (Станниус—методом наложения лигатур, Гаскел – ограниченным охлаждением и нагреванием разных участков сердца), затем исследованиями с регистрацией электрических потенциалов было доказано, что главным центром автоматии 1 порядка, датчиком, водителем (пейсмекером) ритма сердечных сокращений является синоатриальный узел, так как в Р–клетках этого узла отмечается наибольшая скорость диастолической деполяризации и генерации потенциала действия, связанного с изменением ионной проницаемости клеточных мембран.

По удалению от этого узла способность проводящей системы сердца к автоматии уменьшается (закон градиента убывающей автоматии, открытый Гаскеллом). Исходя из этого закона, атриовентрикулярный узел обладает меньшей способностью к автоматии (центр автоматии второго порядка), а остальная часть проводящей системы является центром автоматии третьего порядка.

В нормальных условиях функционирует только автоматия синоатриального узла, а автоматия других отделов подавлена более высокой частотой его возбуждений. Это было доказано Станниусом методом наложения лигатур на разные отделы сердца лягушки. Так, если у лягушки наложить первую лигатуру, отделив венозный синус от предсердий, то сокращения сердца временно прекратятся. Затем через некоторое время или сразу после наложения второй лигатуры на предсердно–желудочковый узел начнутся сокращения предсердий или желудочка (в зависимости от того, как ляжет лигатура и куда отойдет узел), но во всех случаях эти сокращения будут иметь более редкий ритм ввиду меньшей способности к автоматии атриовентрикулярного узла.

Таким образом, импульсы вызывающие сокращения сердца, первоначально зарождаются в синоатриальном узле. Возбуждение от него распространяется по предсердиям и доходит до атриовентрикулярного узла, далее через него по пучку Гиса к желудочкам. При этом возбуждение от синоатриального узла к атриовентрикулярному по предсердиям передается не радиально, как это представлялось раньше, а по наиболее благоприятному, предпочтительному пути, т.е. по клеткам очень сходным с клетками Пуркинье.

Волокна проводящей системы сердца своими многочисленными разветвлениями соединяются с волокнами рабочего миокарда. В области их контакта происходит задержка передачи возбуждения в 30 мс, что имеет определенное функциональное значение. Одиночный импульс, пришедший раньше других по отдельному волокну проводящей системы, может вообще не пройти на рабочий миокард, а при одновременном приходе нескольких импульсов они суммируются, что облегчает их переход на миокард.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Тема: физиологические свойства сердечной мышцы.

Продолжительность изучения темы: 6 часов;

из них на занятие 4 часа: самостоятельная работа 2 часа

Место проведения: учебная комната

Цель занятия: знать основные физиологические свойства сердечной мышцы, обеспечивающие основные показатели деятельности сердца;

уметь правильно интерпретировать процессы, происходящие в кардиомиоцитах, механизмы взаимодействия между ними

Задачи: знать основные физиологические свойства сердечной мышцы (автоматию, возбудимость, проводимость, сократимость);

уметь дать современные представления об особенностях ритмообразовательной функции сердца и, в частности, его главного водителя ритма – синоатриального узла;

уметь определить какой из узлов является водителем ритма сердца,

знать особенности потенциалов действия типичных и атипичных кардиомиоцитов, их ионную природу;

уметь правильно провести электрофизиологический анализ распространения возбуждения по сердцу;

уметь выявить причины, лежащие в основе последовательности, синхронности сокращений предсердий и желудочков;

уметь правильно объяснить закон сокращения сердца («все» или «ничего»), сформулированный Боудичем;

знать и правильно интерпретировать соотношения возбуждения, сокращения и возбудимости в различные фазы кардиоцикла;

уметь выявить причины и условия, при которых возможно возникновение внеочередного сокращения сердца

Значение изучения темы (мотивация): необходимость изучения современных исследований в области физиологии сердца, с целью уметь выявить и оценить, нормальны ли основные физиологические свойства, определяющие частоту, ритм, последовательность, синхронность, силу и скорость сокращения миокарда предсердий и желудочков.

Методические рекомендации по самоподготовке:

Основные свойства сердечной мышцы — возбудимость, автоматизм, проводимость, сократимость.

Возбудимость — свойство отвечать на раздражение электрическим возбуждением в виде изменений мембранного потенциала (МП) с последующей генерацией ПД. Электрогенез в виде МП и ПД определяется разностью концентраций ионов по обе стороны мембраны, а также активностью ионных каналов и ионных насосов. Через пору ионных каналы ионы проходят по электрохимическому градиенту, тогда как ионные насосы обеспечивают движение ионов против электрохимического градиента. В кардиомиоцитах наиболее распространённые каналы — для ионов Na+, K+, Ca2+ и Cl–.

Ca 2+ в — временно открывающиеся каналы, открытые только при значительной деполяризации

Ca 2+ д — каналы, длительно открытые во время деполяризации

K+-выходящие временно открытые

Арахидоновой кислотой активированные

· МП покоя кардиомиоцита составляет –90 мВ. Стимуляция порождает распространяющийся ПД, вызывающий сокращение. Деполяризация развивается быстро, как в скелетной мышце и нерве, но, в отличие от последних, МП возвращается к исходному уровню не сразу, а постепенно.

· Деполяризация длится около 2 мс, фаза плато и реполяризация продолжаются 200 мс и более. Как и в других возбудимых тканях, изменение внеклеточного содержания K+ влияет на МП; изменения внеклеточной концентрации Na+ воздействуют на величину ПД.

Быстрая начальная деполяризация (фаза 0) возникает вследствие открытия потенциалозависимых быстрых Na+ — каналов, ионы Na+ быстро устремляются внутрь клетки и меняют заряд внутренней поверхности мембраны с отрицательного на положительный.

Начальная быстрая реполяризация (фаза 1) — результат закрытия Na+ — каналов, входа в клетку ионов Cl– и выхода из неё ионов K+.

Последующая продолжительная фаза плато (фаза 2 — МП некоторое время сохраняется приблизительно на одном уровне) — результат медленного открытия потенциалозависимых Ca2+ — каналов: ионы Ca2+ поступают внутрь клетки, равно как ионы и Na+, при этом ток ионов K+ из клетки сохраняется.

Конечная быстрая реполяризация (фаза 3) возникает в результате закрытия Ca2+ — каналов на фоне продолжающегося выхода K+ из клетки через K+ — каналы.

В фазу покоя (фаза 4) происходит восстановление МП за счёт обмена ионов Na+ на ионы K+ посредством функционирования специализированной трансмембранной системы — Na+-К+ — насоса. Указанные процессы касаются именно рабочего кардиомиоцита; в клетках водителя ритма фаза 4 несколько отличается.

· Быстрый Na+ -канал имеет наружные и внутренние ворота. Наружные ворота открываются в начале деполяризации, когда МП равен –70 или –80 мВ; при достижении критического значения МП внутренние ворота закрываются и предотвращают дальнейший вход ионов Na+ до тех пор, пока ПД не прекратится (инактивация Na+ — канала). Медленный Ca2+ — канал активируется небольшой деполяризацией (МП в пределах от –30 до –40 мВ).

· Сокращение начинается сразу после начала деполяризации и продолжается в течение всего ПД. Роль Ca2+ в сопряжении возбуждения с сокращением подобна его роли в скелетной мышце. Однако в миокарде триггером, активирующим T-систему и вызывающим выделение Ca2+ из саркоплазматической сети, выступает не сама деполяризация, а внеклеточный Ca2+, поступающий внутрь клетки во время ПД.

· На протяжении фаз 0–2 и примерно до середины фазы 3 (до достижения МП во время реполяризации уровня –50 мВ) мышца сердца не может быть возбуждена снова. Она находится в состоянии абсолютного рефрактерного периода, т.е. состоянии полной невозбудимости.

· После абсолютного рефрактерного периода возникает состояние относительной рефрактерности, в котором миокард остаётся до фазы 4, т.е. до возвращения МП к исходному уровню. В период относительной рефрактерности сердечная мышца может быть возбуждена, но только в ответ на очень сильный стимул.

· Сердечная мышца не может, как скелетная мышца, находиться в тетаническом сокращении. Тетанизация (стимуляция высокой частотой) сердечной мышцы в течение сколько-нибудь продолжительного времени приведёт к летальному исходу. Мускулатура желудочков должна быть рефрактерной; говоря иными словами, быть в «периоде неуязвимости» до конца ПД, поскольку стимуляция миокарда в этот период может вызывать фибрилляцию желудочков, которая при достаточной длительности фатальна для больного.

Автоматизм — способность пейсмейкерных клеток инициировать возбуждение спонтанно, без участия нейрогуморального контроля. Возбуждение, приводящее к сокращению сердца, возникает в специализированной проводящей системе сердца и распространяется посредством неё ко всем частям миокарда.

Проводящая система сердца. Структуры, входящие в состав проводящей системы сердца, — синусно-предсердный узел, межузловые предсердные пути, АВ-соединение (нижняя часть проводящей системы предсердий, прилегающая к АВ-узлу, собственно АВ-узел, верхняя часть пучка Гиса), пучок Гиса и его ветви, система волокон Пуркинье Водители ритма. Все отделы проводящей системы способны генерировать ПД с определённой частотой, определяющей в конечном итоге ЧСС, — т.е. быть водителем ритма. Однако синусно-предсердный узел генерирует ПД быстрее других отделов проводящей системы, и деполяризация от него распространяется в другие участки проводящей системы прежде, чем они начнут спонтанно возбуждаться. Таким образом, синусно-предсердный узел — ведущий водитель ритма, или водитель ритма первого порядка. Частота его спонтанных разрядов определяет частоту биений сердца (в среднем 60–90 в минуту).

Функциональная анатомия проводящей системы сердца

· Топография. Синусно-предсердный узел располагается в месте впадения верхней полой вены в правое предсердие. Предсердно–желудочковый узел (АВ-узел) находится в правой задней части межпредсердной перегородки, непосредственно позади трёхстворчатого клапана. Связь между синусно-предсердным и АВ-узлами осуществляется двумя путями: диффузно миоцитами предсердия и по специальным внутрисердечным проводящим пучкам. АВ-узел служит только проводящим путём между предсердиями и желудочками. Он продолжается в пучок Хиса, подразделяющийся на левую и правую ножки и мелкие пучки. Левая ножка пучка Хиса, в свою очередь, делится на переднюю и заднюю ветви. Ножки и пучки проходят под эндокардом, где контактируют с системой волокон Пуркинье; последние распространяются ко всем частям миокарда желудочков.

Советуем прочитать:  Чем снять спазм в мышце ноги

· Асимметрия вегетативной иннервации. Синусно-предсердный узел происходит из эмбриональных структур правой стороны тела, а АВ-узел — из структур левой стороны тела. Это объясняет факт, почему правый блуждающий нерв преимущественно распределён в синусно-предсердном узле, а левый блуждающий нерв — в АВ-узле. Соответственно, симпатическая иннервация правой стороны распределена преимущественно в синусно-предсердном узле, симпатическая иннервация левой стороны — в АВ-узле.

МП пейсмейкерных клеток после каждого ПД возвращается к пороговому уровню возбуждения. Этот потенциал, называемый препотенциалом (пейсмейкерным потенциалом) — триггер для следующего потенциала. На пике каждого ПД после деполяризации возникает калиевый ток, приводящий к запуску процессов реполяризации. Когда калиевый ток и выход ионов K+ уменьшаются, мембрана начинает деполяризоваться, формируя первую часть препотенциала. Открываются Ca2+ — каналы двух типов: временно открывающиеся Ca2+в — каналы и длительно действующие Ca2+д — каналы. Кальциевый ток, идущий по Ca2+в — каналам, образует препотенциал, кальциевый ток в Ca2+д — каналах создаёт ПД.

· ПД в синусно-предсердном и АВ-узлах создаются главным образом ионами Ca2+ и некоторым количеством ионов Na+. У этих потенциалов отсутствует фаза быстрой деполяризации перед фазой плато, которая имеется в других частях проводящей системы и в волокнах предсердия и желудочков.

· Стимуляция парасимпатического нерва, иннервирующего ткани синусно-предсердного узла, гиперполяризует мембрану клеток и тем самым уменьшает скорость возникновения препотенциала действия. Ацетилхолин, выделяемый нервными окончаниями, открывает специальные ацетилхолин–зависимые K+ — каналы в пейсмейкерных клетках, повышая проницаемость мембраны для ионов K+ (что увеличивает положительный заряд наружной стороны клеточной мембраны и ещё больше усиливает отрицательный заряд внутренней стороны клеточной мембраны) Кроме того, ацетилхолин активирует мускариновые M2-рецепторы, что приводит к понижению уровня цАМФ в клетках и замедлению открытия медленных Ca2+ — каналов в период диастолы. В результате замедляется скорость спонтанной диастолической деполяризации. Необходимо учитывать, что сильная стимуляция блуждающего нерва (например, при массаже каротидного синуса) может на некоторое время полностью останавливать процессы генерации импульсов в синусно-предсердном узле.

· Стимуляция симпатических нервов ускоряет деполяризацию и увеличивает частоту генерирования ПД. Норадреналин, взаимодействуя в том числе с β1 — адренорецепторами, повышает внутриклеточное содержание цАМФ, открывает Ca2+д — каналы, увеличивает ток ионов Ca2+ в клетку и ускоряет спонтанную диастолическую деполяризацию (фазу 0 ПД).

· Частота разрядов синусно-предсердного и АВ-узлов подвержена влиянию температуры и различных биологически активных веществ (например, повышение температуры увеличивает частоту разрядов).

Распространение возбуждения по сердечной мышце

Деполяризация, возникающая в синусно-предсердном узле, распространяется радиально по предсердиям и затем сходится (конвергирует) в АВ-соединении. Деполяризация предсердий полностью завершается в течение 0,1 с. Так как проведение в АВ-узле происходит медленнее по сравнению с проведением в миокарде предсердий и желудочков, возникает предсердно-желудочковая (АВ-) задержка длительностью 0,1 с, после которой возбуждение распространяется на миокард желудочков. Продолжительность предсердно-желудочковой задержки сокращается при стимуляции симпатических нервов сердца, тогда как под влиянием раздражения блуждающего нерва её длительность увеличивается.

От основания межжелудочковой перегородки волна деполяризации с большой скоростью распространяется по системе волокон Пуркинье ко всем частям желудочка в течение 0,08–0,1 с. Деполяризация миокарда желудочка начинается с левой стороны межжелудочковой перегородки и распространяется прежде всего вправо сквозь среднюю часть перегородки. Затем волна деполяризации проходит по перегородке вниз к верхушке сердца. Вдоль стенки желудочка она возвращается к АВ-узлу, переходя с субэндокардиальной поверхности миокарда на субэпикардиальную.

Пучок Гиса. Кардиомиоциты этого пучка проводят возбуждение от АВ-соединения к волокнам Пуркинье. Проводящие кардиомиоциты пучка Гиса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.

Волокна Пуркинье. Проводящие кардиомиоциты волокон Пуркинье — самые крупные клетки миокарда. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны с помощью десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает наиболее высокую скорость проведения возбуждения по миокарду желудочков.

Дополнительные проводящие пути сердца

Бахмана пучок начинается от синусно-предсердного узла, часть волокон расположена между предсердиями (межпредсердный пучок к ушку левого предсердия), часть волокон направляется к предсердно-желудочковому узлу (передний межузловой тракт).

Венкебаха пучок начинается от синусно-предсердного узла, его волокна направляются в левое предсердие и к предсердно-желудочковому узлу (средний межузловой тракт).

Джеймса пучок соединяет одно из предсердий с АВ-соединением или проходит внутри этого соединения, по этому пучку возбуждение может преждевременно распространиться на желудочки. Пучок Джеймса важен для понимания патогенеза синдрома Лауна–Генона–Ливайна. Более быстрое распространение импульса при этом синдроме через дополнительный проводящий путь приводит к укорочению интервала PR (PQ), однако расширения комплекса QRS нет, поскольку возбуждение распространяется от АВ-соединения обычным путём.

Кента пучок — дополнительное предсердно-желудочковое соединение — аномальный пучок между левым предсердием и одним из желудочков. Этот пучок играет важную роль в патогенезе синдрома Вольффа–Паркинсона–Уайта. Более быстрое распространение импульса через этот дополнительный проводящий путь приводит к: 1) укорочению интервала PR (PQ); 2) более раннему возбуждению части желудочков — возникает волна D, обусловливающая расширение комплекса QRS.

Махейма пучок (атриофасцикулярный тракт). Патогенез синдрома Махейма объясняется наличием дополнительного проводящего пути, связывающего пучок Гиса с желудочками. При проведении возбуждения через пучок Махейма импульс распространяется через предсердия к желудочкам обычным путём, а в желудочках часть их миокарда возбуждается преждевременно в связи с наличием дополнительного проводящего пути. Интервал PR (PQ) при этом нормальный, а комплекс QRS уширен из-за волны D..

Экстрасистола — преждевременное (внеочередное) сокращение сердца, инициированное возбуждением, исходящим из миокарда предсердий, AВ-соединения или желудочков. Экстрасистола прерывает доминирующий (обычно синусовый) ритм. Во время экстрасистолы пациенты обычно ощущают перебои в работе сердца.

Свойство сократимости миокарда обеспечивает контрактильный аппарат кардиомиоцитов, связанных в функциональный синцитий при помощи ионопроницаемых щелевых контактов. Это обстоятельство синхронизирует распространение возбуждения от клетки к клетке и сокращение кардиомиоцитов. Увеличение силы сокращения миокарда желудочков — положительный инотропный эффект катехоламинов — опосредовано β1— адренорецепторами (через эти рецепторы действует также симпатическая иннервация) и цАМФ. Сердечные гликозиды также усиливают сокращения сердечной мышцы, оказывая ингибирующее влияние на Na+,K+ — АТФазу в клеточных мембранах кардиомиоцитов.

Необходимый исходный уровень знаний:

Расположение и особенности структуры узлов автоматии и проводящей системы сердца человека.

Мембранно — ионные механизмы происхождения ПП и ПД в возбудимых структурах.

Механизмы и природу передачи информации в мышечной ткани.

Ультраструктуру скелетной мышечной ткани и роль клеточно-субклеточных образований, участвующих в сокращении.

Строение и функцию основных сократительных и регуляторных белков.

Основы электромеханического сопряжения в скелетной мышечной ткани.

Энергетическое обеспечение процесса возбуждение – сокращение — расслабление в мышцах.

1.Вводное слово преподавателя о цели занятия и схеме его проведения. Ответы на вопросы студентов -10 минут.

3. Учебно-практическая и исследовательская работа студентов — 70 минут.

4. Выполнение студентами индивидуальных контрольных заданий — 10 минут.

Вопросы для самоподготовки к занятию:

1. Физиологические свойства и особенности сердечной мышцы.

2. Автоматия сердечной мышцы, её причины. Части проводящей системы сердца. Основной водитель ритма сердца, механизмы его ритмообразовательной функции. Особенности возникновения ПД в клетках синусного узла.

3. Градиент автоматии, роль атриовентрикулярного узла и других отделов проводящей системы сердца.

4. Потенциал действия рабочих кардиомиоцитов, его особенности.

5. Анализ распространения возбуждения по сердцу.

6. Возбудимость сердечной мышцы.

7. Сократимость сердечной мышцы. Закон “всё или ничего”. Гомео- и гетерометрические механизмы регуляции сократимости миокарда.

8. Соотношение возбуждения, сокращения и возбудимости в течение кардиоцикла. Экстрасистолы, механизмы его образования.

9. Возрастные особенности у детей.

Учебно-практическая и исследовательская работа:

Посмотрите видеофильм “Свойства сердечной мышцы”.

Рассмотрите слайды “Возникновение и распространение возбуждения в сердечной мышце”. Зарисуйте в тетради (для запоминания) расположение основных элементов проводящей системы. Отметьте особенности распространения возбуждения в ней. Зарисуйте и запомните особенности потенциала действия рабочих кардиомиоцитов и клеток водителя ритма.

После изучения теоретического материала и просмотра (слайдов, фильмов), ответьте на следующие вопросы:

1. Какова ионная основа мембранного потенциала действия клеток миокарда?

2. Из каких фаз состоит потенциал действия клеток миокарда?

3. Как развивались представления клеток миокарда?

4. Каково значение диастолической деполяризации и порогового потенциала в поддержании автоматии сердца?

5. Из каких основных элементов состоит проводящая система сердца?

6. Каковы особенности распространения возбуждения в проводящей системе сердца?

7. Что такое рефрактерность? В чём различие между периодами абсолютной и относительной рефрактерности?

8. Как влияет исходная длина волокон миокарда на силу сокращений?

Проанализируйте ситуационные задачи.

1. Мембранный потенциал пейсмекерной клетки сердца увеличился на

20 мВ. Как это повлияет на частоту генерации автоматических импульсов?

2. Мембранный потенциал пейсмекерной клетки сердца снизился на 20 мВ. Как это повлияет на частоту генерации автоматических импульсов?

3. Под влиянием фармакологического препарата укоротилась фаза 2 (плато) потенциалов действия рабочих кардиомиоцитов. Какие физиологические свойства миокарда изменятся и почему?

Посмотрите видеофильмы знакомящие с методиками проведения экспериментов. Обсудите увиденное с преподавателем.

Выполните эксперименты. Проанализируйте и обсудите полученные результаты. Сделайте выводы.

1. Анализ проводящей системы сердца методом наложения лигатур (лигатуры Станниуса), (см. практикум, с.62-64).

2. Возбудимость сердца, экстрасистола и реакция на ритмические раздражения. (см. Практикум с.67-69).

Физиология человека: Учебник/Под ред. В.М.Смирнова

Нормальная физиология. Учебное пособие./ В.П.Дегтярев, В.А.Коротич, Р.П.Фенькина,

Физиология человека: В 3-х томах. Пер. с англ./ Под. Ред. Р. Шмидта и Г. Тевса

Практикум по физиологии /Под ред. М.А. Медведева.

Физиология. Основы и функциональные системы: Курс лекций/ Под ред. К. В.Судакова.

Нормальная физиология: Курс физиологии функциональных систем. /Под ред. К.В.Судакова

Нормальная физиология: Учебник/ Ноздрачев А.Д., Орлов Р.С.

Нормальная физиология: учебное пособие : в 3 т. В. Н. Яковлев и др.

Юрина М.А Нормальная физиология (учебно-методическое пособие).

Юрина М.А. Нормальная физиология (краткий курс лекций)

Физиология человека / Под редакцией А.В. Косицкого.-М.: Медицина, 1985.

Нормальная физиология / Под ред. А.В. Коробкова.-М.; Высшая школа, 1980.

Основы физиологии человека / Под ред. Б.И. Ткаченко.-Спб.; 1994.

источник