Меню

Возникновение и распространение возбуждения в сердечной мышце

Особенности возбуждения сердечной мышцы

1. Закон «все или ничего«. Сердечная мышца при действии раздражителя либо не отвечает на возбуждение, если раздражитель слабый, либо отвечает полной силой.

В основе закона лежит особенность строения сердца — функциональный синцитий. Мышечные клетки сердца связаны между собой вставочными дисками(нексусы), в этом сходство с гладкой мускулатурой.

2.На графике потенциала действия сердечной мышцы, в отличие от скелет­­ной, на начальном этапе фазы реполяризации регистрируется т.н. «фаза плато», обусловленная входящим током ионов Са ++ . Этот процесс обусловлен открыти­ем «медленных» кальциевых каналов, продолжающих процесс деполяриза­ции мембраны кардиомиоцита уже после закрытия Na-евых каналов.

Наличие «фазы плато» приводит к значительному удлинению пика потенциала действия и как следствие значительное увеличение времени « фазы абсолютной рефрактерности», во время которой сердечная мышца абсолютно невозбудима.

Фазы изменения возбудимости сердечной мышцы.

1. Абсолютная рефрактерность (0,27 сек) — полная невозбудимость.

2. Относительная рефрактерность (0,03 сек) — способность возбуждаться в ответ на сверхпороговый раздражитель. Исходя из того, что продолжительность этих двух фаз в сумме составляет 0,3 сек, можно рассчитать максимально возможную частоту сердечных сокращений(60 сек. : 0,3 сек. = 200/мин.)

3. Супернормальная возбудимость. В эту фазу возбудимость в сердце выше нормы и действие в этот момент даже слабых (подпороговых) раздражителей (рубцы, спайки, атеросклеротические бляшки) может приводить к внеочередному сокращению — экстрасистоле.

Проводимость — способность органа распространять возбуждение на невозбужденные участки.

Последовательность охвата возбуждением отделов сердца:

1. предсердия (правое, а затем и левое); 2. при прохождении возбуждения на желудочки — единственное место, содержащее возбудимые ткани — а/в узел, т.к. в остальных местах — фиброзное кольцо; 3 межжелудочковая перегородка; 4. верхушка; 5. боковые стенки желудочков; 6. основания желудочков.

Скорость проведения возбуждения: предсердие — 1 м/сек, атриовентрикулярный узел — 0,2 м/сек, пучок Гиса — 4 м/сек, волокна Пуркинье — 3 м/сек, типичный миокард — 0,8 м/сек.

Следовательно, возбуждение по желудочкам распространяется не диффуз­но, а последовательно по проводящей системе (это объясняет синхронность сокращения типичных кардиомиоцитов в различных участках желудочков. Кроме того, имеет место задержка проведения возбуждения в атриовентрикулярном узле, что позволяет систоле предсердий опережать систолу желудочков.

Один из вариантов аритмии экстрасистолия (внеочередное сокращение сердца). Возникает в связи с действием подпороговых по силе раздражителей (пост­инфарктные рубцы, атеросклеротические бляшки, очаги миокардита) в супер­­­­­нормальную фазу возбудимости, что и приводит к внеочередному сокращению.

В зависимости от локализации в сердце гетеротопного очага импульсации экстрасистолы подразделяются на предсердные и желудочковые.

На ЭКГ экстрасистолу можно отличить по определенным признакам:

1. Облигатный признак — укорочение интервала RR перед экстрасистолой.

2. Факультативный признак — наличие «компенсаторной паузы» (т.е. удлинение интервала RR после экстрасистолы вследствие выпадения очередного сердечного цикла). Наблюдается в случае, если очередной импульс из синоат­риального узла приходится на период абсолютной рефрактерности. При нормо- или брадикардии данный признак может отсутствовать.

3. Дополнительный признак для желудочковых экстрасистол — наличие извращенного желудочкового комплекса вместо классической последовательно­сти элементов на ЭКГ (т.к. возбуждение охватывает желудочки сердца не в обычной последовательности).

Экстрасистолыподразделяются на одиночные и групповые.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8448 — | 8054 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Распространение возбуждения по сердечной мышце

Деполяризация, возникающая в синусно-предсердном узле, распространяется радиально по предсердиям и затем сходится (конвергирует) в АВ-соединении (рис. 23–6). Деполяризация предсердий полностью завершается в течение 0,1 с. Так как проведение в АВ-узле происходит медленнее по сравнению с проведением в миокарде предсердий и желудочков (табл. 23–2), возникает предсердно-желудочковая (АВ-) задержка длительностью 0,1 с, после которой возбуждение распространяется на миокард желудочков. Продолжительность предсердно-желудочковой задержки сокращается при стимуляции симпатических нервов сердца, тогда как под влиянием раздражения блуждающего нерва её длительность увеличивается.

Таблица 23–2. Скорость проведения возбуждения (м/с) в тканях сердца

От основания межжелудочковой перегородки волна деполяризации с большой скоростью распространяется по системе волокон Пуркиньеко всем частям желудочка в течение 0,08–0,1 с. Деполяризация миокарда желудочка начинается с левой стороны межжелудочковой перегородки и распространяется прежде всего вправо сквозь среднюю часть перегородки. Затем волна деполяризации проходит по перегородке вниз к верхушке сердца. Вдоль стенки желудочка она возвращается к АВ-узлу, переходя с субэндокардиальной поверхности миокарда на субэпикардиальную.

ПучокХиса. Кардиомиоциты этого пучка проводят возбуждение от АВ-соединения к волокнамПуркинье. Проводящие кардиомиоциты пучка Хиса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.

ВолокнаПуркинье. Проводящие кардиомиоциты волокон Пуркинье — самые крупные клетки миокарда. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны с помощью десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает наиболее высокую скорость проведения возбуждения по миокарду желудочков.

Нарушения автоматизма и проводимости

Синусоваябрадикардияможет быть физиологической (например, у тренированных спортсменов) и патологической. При снижении ЧСС до 35 в минуту может произойти потеря сознания, что опасно возникновением различных осложнений (вплоть до летального исхода).

Синдромслабостисинусно-предсердногоузла— нарушение образования импульсов в синусно-предсердном узле, что приводит к брадикардии и длительным паузам в его работе. Клинически синдром проявляется брадикардией и обмороками.

Остановкасинусно-предсердногоузла— прекращение генерации импульсов. Пауза, превышающая 10–20 с, ведёт к потере сознания — развивается гипоксия головного мозга, что сопровождается судорожным синдромом (синдромом Морганьи–Адамса–Стокса).

ПатологияАВ-узла. Блокаду АВ-узла обозначают термином «АВ-блокада». При ней в разной степени затрудняется проведение возбуждения к пучкуХиса и сократительному миокарду. При крайне выраженной АВ-блокаде (полном прекращении АВ-проведения) предсердия и желудочки сокращаются каждые в своём ритме: для предсердий водителем ритма выступает синусно-предсердный узел, а для желудочков — АВ-соединение. Полная АВ-блокада ввиду редкого ритма сокращения желудочков также может приводить к обморокам, во время которых возможен летальный исход. Причины АВ-блокад — инфаркт миокарда, миокардит; иногда причину поражения проводящей системы установить не удаётся (идиопатическая АВ-блокада). Кроме того, блокада может наступить вследствие применения препаратов, оказывающих отрицательный дромотропный эффект на проводящую систему (сердечные гликозиды, блокаторы медленных кальциевых каналов и-адреноблокаторы).

БлокадыножекпучкаХисахарактеризуются полным прекращением проведения возбуждения по левой (одновременно по её передней и задней ветвям) или правой ножке предсердно-желудочкового пучка. Возможно нарушения проведения изолированно по передней или задней ветви левой ножки пучка Хиса.

Дополнительныепроводящиепути(рис. 23–6–1) — аномальные проводящие пути, по которым возбуждение способно распространяться «в обход» нормальной проводящей системы от предсердий к желудочкам. Эти дополнительные проводящие пути не обладают свойством задерживать проведение возбуждения (как это происходит в АВ-соединении), что не только нарушает внутрисердечную гемодинамику (желудочки сокращаются до того, как успеют заполниться кровью из предсердий, для чего и необходима АВ-задержка), но вследствие аномального маршрута распространения возбуждения может привести к серьёзным аритмиям, зачастую представляющим опасность для жизни больного. Так, функционирование дополнительного пути проведения, называемого пучком Кента, обусловливает развитие синдрома Вольффа–Паркинсона–Уайта.

Рис. 23–6–1. Дополнительные проводящие пути сердца[17]. 1 — синусно-предсердный узел, 2 — межузловые проводящие пути, 3 — пучок Бахмана, 4 — АВ-соединение, 5 — пучокХиса, 6 — правая ножка пучка Хиса, 7 — левая ножка пучка Хиса, 8 — передняя ветвь левой ножки пучка Хиса, 9 — задняя ветвь левой ножки пучка Хиса; К1 и К2 — пучки Кента, J — пучок Джеймса, М — пучок Махейма

Советуем прочитать:  Что сделать чтобы мышцы выделялись

Бахманапучокначинается от синусно‑предсердного узла, часть волокон расположена между предсердиями (межпредсердный пучок к ушку левого предсердия), часть волокон направляется к предсердно‑желудочковому узлу (передний межузловой тракт).

Венкебахапучокначинается от синусно‑предсердного узла, его волокна направляются в левое предсердие и к предсердно‑желудочковому узлу (средний межузловой тракт).

Джеймсапучоксоединяет одно из предсердий с АВ-соединением или проходит внутри этого соединения, по этому пучку возбуждение может преждевременно распространиться на желудочки. Пучок Джеймса важен для понимания патогенеза синдрома Лауна–Генона–Ливайна. Более быстрое распространение импульса при этом синдроме через дополнительный проводящий путь приводит к укорочению интервала PR (PQ), однако расширения комплекса QRS нет, поскольку возбуждение распространяется от АВ-соединения обычным путём.

Кентапучок— дополнительное предсердно-желудочковое соединение — аномальный пучок между левым предсердием и одним из желудочков. Этот пучок играет важную роль в патогенезе синдрома Вольффа–Паркинсона–Уайта. Более быстрое распространение импульса через этот дополнительный проводящий путь приводит к:1) укорочению интервала PR (PQ);2) более раннему возбуждению части желудочков — возникает волна, обусловливающая расширение комплекса QRS.

Махеймапучок(атриофасцикулярный тракт). Патогенез синдрома Махейма объясняется наличием дополнительного проводящего пути, связывающего пучокХиса с желудочками. При проведении возбуждения через пучок Махейма импульс распространяется через предсердия к желудочкам обычным путём, а в желудочках часть их миокарда возбуждается преждевременно в связи с наличием дополнительного проводящего пути. Интервал PR (PQ) при этом нормальный, а комплекс QRS уширен из-за волны.

Гетеротопическиеочагивозбуждения— участки миокарда, генерирующие возбуждение и подавляющие активность (временно на одно сокращение или постоянно) нормального водителя ритма (синусно-предсердного узла). В итоге сокращение всего сердца инициируется именно этим активным участком миокарда, выступающимгетеротопическимводителем ритма.

Экстрасистола— преждевременное (внеочередное) сокращение сердца, инициированное возбуждением, исходящим из миокарда предсердий, AВ-соединения или желудочков. Экстрасистола прерывает доминирующий (обычно синусовый) ритм. Во время экстрасистолы пациенты обычно ощущают перебои в работе сердца.

Пароксизмальнаятахикардия— внезапно начинающиеся и внезапно прекращающиеся приступы тахикардии — возникает в результате активности гетеротопических очагов автоматизма или (чаще) патологической циркуляции волны возбуждения по миокарду (соответственно пароксизмальная тахикардия может быть предсердной, АВ-узловой и желудочковой). Желудочковая пароксизмальная тахикардия возникает при наличии гетеротопического очага автоматизма в желудочках сердца и/или при патологической циркуляции волны возбуждения по миокарду.

источник

3)Особенности возбуждения в сердечной мышце

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения воз­буждения в сердечной мышце необходимо применить бо­лее сильный раздражитель, чем для скелетной. Установ­лено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, меха­нических, химических и т. д.). Сердечная мышца макси­мально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по во­локнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со ско­ростью 0,8—1,0 м/с, по волокнам мышц желудочков— 0,8—0,9 м/с, по специальной ткани сердца—2,0—4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы пред­сердии, затем—папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспе­чивая тем самым движение крови из полостей желудоч­ков в аорту и легочный ствол.

Физиологическими особенностями сердечной мышцы является удлиненный рефрактерный период и автоматия. Теперь о них поподробнее.

Рефрактерный период. В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение ее активности. Выделяют абсолютный и относительный рефрактерный период (р.п.). Во время абсолютного р.п. какой бы силы не наносили раздражения на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Он соответствует по времени систоле и началу диастолы предсердий и желудочков. Во время относительного р.п. возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период мышца может ответить на раздражитель сильнее порогового. Он обнаруживается во время диастолы предсердий и желудочков.

Сокращение миокарда продолжается около 0.3 с, по времени примерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на раздражители. Благодаря выраженному р.п. .р.рррр.п., который длится больше чем период систолы, сердечная мышца неспособна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматия сердца. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина со­кращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влия­нием импульсов, возникающих в нем самом, носит назва­ние автоматии.

В сердце различают рабочую мускулатуру, представ­ленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипиче­ская ткань состоит из:

синоаурикулярного узла, располагающегося на задней стенке правого предсердия у места впа­дения полых вен;

атриовентрикулярного (предсердно-желудочкого) узла находящегося в правом предсердии вблизи пере­городки между предсер­диями и желудочками;

пучка Гиса (председно-желудочковый пу­чок), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегород­ку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желу­дочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса—это единственный мышечный мос­тик, соединяющий предсердия с желудочками.

источник

4. Проводящая система сердца. Распространение возбуждения по миокарду.

АТМВ миокарда образуют так называемую проводящую систему. Она представляет собой совокупность узлов и пучков атипичной мышечной ткани, функцией которой является генерация ПД, служащих стимулами для ТМВ, то есть задание определенного ритма сердечных сокращений. Строение проводящей системы обеспечивает строго согласованное и последовательное возбуждение и сокращение различных отделов сердца.

В норме водителем ритма является синоатриальный узел, расположенный в стенке правого предсердия в месте впадения в него верхней полой вены. Частота разрядов СА в покое составляет около 70 1/мин. От этого узла возбуждение вначале распространяется по рабочему миокарду предсердий (со скоростью порядка 1 м/с).

Единственный путь, по которому возбуждение может пройти к желудочкам, образует атриовентрикулярный узел (АВ), лежащий в предсердно-желудочковой перегородке (остальная часть атриовентрикулярного соединения образована невозбудимой соединительной тканью). В АВ узле скорость проведения значительно падает (в 20-50 раз; 0,02-0,05 м/с) за счет снижения диаметра волокон АВ-узла и поперечного их расположения Передача возбуждения — через боковые щелевые контакты. Это приводит к тому, что возбуждение «задерживается» в АВ-узле (АВ-задержка необходима для полного перехода крови из предсердий в желудочки во время сокращения предсердий).

Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье к верхушке сердца со все возрастающей (до 4-5 м/с) скоростью (увеличение диаметра АТМВ), а затем переходит на рабочие волокна миокарда, по которым распространяется в обратном направлении – от верхушки сердца к основанию. За волной возбуждения следует сокращение ТМВ миокарда.

Следует отметить, что при нарушении функции водителя ритма первого порядка (СА-узла) его роль могут выполнять другие отделы проводящей системы (им также присущ автоматизм), но направление распространения возбуждения по сердцу при этом будет нарушено (да и собственная частота генерации ПД у этих отделов проводящей системы ниже – 40-60 – у АВ-узла, у других отделов – еще меньше). Это приводит к тяжелым нарушениям насосной функции сердца (пример – полная поперечная блокада).

5. Электрокардиография. Электрокардиограмма. Интегральный электрический вектор сердца.

Сложный характер распространения возбуждения по сердцу отображается в электрокардиограмме (ЭКГ), по форме которой можно судить о возбудимости и проводимости различных отделов сердца (но не о сократимости волокон миокарда!)

Советуем прочитать:  Болит икроножная мышца после спазма

Если рассмотреть отдельное миокардиальное волокно, то в покое его наружная поверхность имеет положительный, а внутренняя – отрицательный потенциал. При возбуждении (ПД) возбужденный участок мембраны меняет свою полярность (см. схему). Возбужденное волокно можно рассматривать как диполь, обладающий определенным дипольным моментом. Векторная сумма дипольных моментов всех волокон миокарда называется интегральным электрическим вектором сердца (ИЭВС). Этот вектор в каждый момент времени направлен от наиболее возбужденного (электроотрицательного) к наименее возбужденному (электроположительному) участку сердца, и величина и направление его в ходе сердечного цикла многократно меняются.

Как известно, движущиеся заряды создают вокруг себя переменное электрическое поле, которое распространяется в пространстве. Поэтому работающее сердце также является источником электрического поля, которое можно зарегистрировать на поверхности тела. Для этого на различные точки поверхности тела накладывают отводящие электроды и регистрируют разность потенциалов между ними. Регистрирующий прибор (электрокардиограф) по сути представляет собой усилитель переменного тока и регистрирующее устройство (самописец). Кривая, отображающая зависимость этой разности потенциалов от времени, называется электрокардиограммой. Она представляет собой периодическое (Т = 1/ЧСС) колебание сложной формы.

Величина разности потенциалов, регистрируемой между двумя электродами, находящимися на поверхности тела человека будет зависеть от величины интегрального электрического вектора и угла между направлением этого вектора и осью отведения (проведенной между этими электродами) (см. схему). Таким образом, ЭКГ представляет собой динамику во времени проекции ИЭВС на ось отведения.

По предсердиям возбуждение распространяется в направлении сверху вниз; это означает, что ИЭВС ориентирован по направлению к верхушке сердца. На ЭКГ регистрируется зубец Р, отображающий деполяризацию предсердий. Во время возбуждения всех отделов предсердий разность потенциалов временно исчезает, так как ПД всех предсердных клеток находятся в фазе плато. В это время возбуждение распространяется по проводящей системе желудочков, но общее количество возбужденных клеток при этом невелико и существенной разности потенциалов не возникает (сегмент PQ). Длительность этого сегмента несет информацию о величине атриовентрикулярной задержки. При переходе на рабочий миокард желудочков в сердце снова появляются значительные градиенты напряжения. Возбуждение желудочков начинается с деполяризации левой поверхности межжелудочковой перегородки (ИЭВС направлен к основанию сердца (начало комплекса QRS). Затем вектор быстро меняет направление на противоположное (к верхушке) = распространение возбуждения через стенку желудочков от эндокарда к эпикарду (регистрируется самый крупный зубец R); в последнюю очередь возбуждается участок правого желудочка в области основания легочного ствола (ИЭВС направлен вправо и вверх). Когда желудочки полностью охвачены возбуждением, разность потенциалов временно исчезает (сегмент ST). Затем следует фаза реполяризации желудочков (зубец Т), в ходе этой фазы ИЭВС ориентирован влево (это связано с тем, что разные отделы миокарда желудочков реполяризуются с разной скоростью).

Таким образом, в ходе сегодняшней лекции вы познакомились с особенностями распространения возбуждения по возбудимым мембранам (т.е. по мембранам мышечных и нервных волокон), основными принципами передачи возбуждения с одной возбудимой клетки на другую, а также с особенностями биоэлектрогенеза такого важного и сложного органа как сердце и с происхождением электрокардиограммы, имеющей огромное значение для диагностики многих видов патологии сердца. Естественно, что эти знания будут углублены и дополнены на практическом занятии, посвященном этой теме, а в дальнейшем — на кафедрах пропедевтики внутренних болезней, кардиологии и многих других, где вы познакомитесь с изменениями электрокардиограммы при нарушениях возбудимости и проводимости различных отделов миокарда.

Разработала заведующая кафедрой биологической и медицинской физики кандидат физико-математических наук доцент Новикова Н.Г.

источник

Особенности возбуждения в сердечной мышце

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения воз­буждения в сердечной мышце необходимо применить бо­лее сильный раздражитель, чем для скелетной. Установ­лено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, меха­нических, химических и т. д.). Сердечная мышца макси­мально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по во­локнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со ско­ростью 0,8—1,0 м/с, по волокнам мышц желудочков— 0,8—0,9 м/с, по специальной ткани сердца—2,0—4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы пред­сердии, затем—папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспе­чивая тем самым движение крови из полостей желудоч­ков в аорту и легочный ствол.

Физиологическими особенностями сердечной мышцы является удлиненный рефрактерный период и автоматия. Теперь о них поподробнее.

Рефрактерный период. В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение ее активности. Выделяют абсолютный и относительный рефрактерный период (р.п.). Во время абсолютного р.п. какой бы силы не наносили раздражения на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Он соответствует по времени систоле и началу диастолы предсердий и желудочков. Во время относительного р.п. возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период мышца может ответить на раздражитель сильнее порогового. Он обнаруживается во время диастолы предсердий и желудочков.

Сокращение миокарда продолжается около 0.3 с, по времени примерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на раздражители. Благодаря выраженному р.п. .р.рррр.п., который длится больше чем период систолы, сердечная мышца неспособна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматия сердца. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина со­кращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влия­нием импульсов, возникающих в нем самом, носит назва­ние автоматии.

В сердце различают рабочую мускулатуру, представ­ленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипиче­ская ткань состоит из:

синоаурикулярного узла, располагающегося на задней стенке правого предсердия у места впа­дения полых вен;

атриовентрикулярного (предсердно-желудочкого) узла находящегося в правом предсердии вблизи пере­городки между предсер­диями и желудочками;

пучка Гиса (председно-желудочковый пу­чок), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегород­ку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желу­дочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса—это единственный мышечный мос­тик, соединяющий предсердия с желудочками.

109) при физической работе. Во время выполнения физической работы мышцам необходимо большое количество кислорода. Потребление 02 и продукция СО2 возрастают при физической нагрузке в среднем в 15 — 20 раз. Обеспечение организма кислородом достигается сочетанным усилением функции дыхания и кровообращения. Уже в начале мышечной работы вентиляция легких быстро увеличивается. В возникновении гиперпноэ в начале физической работы периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра еще не участвуют. Уровень вентиляции в этот период регулируется сигналами, поступающими к дыхательному центру главным образом из гипоталамуса, лимбической системы и двигательной зоны коры большого мозга, а также раздражением проприорецепторов работающих мышц. По мере продолжения работы к нейрогенным стимулам присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции. При тяжелой физической работе на уровень вентиляции оказывают влияние также повышение температуры, артериальная двигательная гипоксия и другие лимитирующие факторы.

при пониженном атмосферном давлении. При подъеме на высоту человек оказывается в условиях пониженного атмосферного давления. Следствием понижения атмосферного давления является гипоксия, которая развивается в результате низкого парциального давления кислорода во вдыхаемом воздухе.При подъеме на высоту 1,5-2 км над уровнем моря не происходит значительного изменения снабжения организма кислородом и изменения дыхания. На высоте 2,5-5 км наступает увеличение вентиляции легких, вызванное стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Все эти реакции направлены на усиление снабжения тканей кислородом.Увеличение вентиляции легких на высоте может привести к снижению парциального давления углекислого газа в альвеолярном воздухе — гипокапнии, при которой снижается стимуляция хеморецепторов, особенно центральных, это ограничивает увеличение вентиляции легких.

Советуем прочитать:  Тренировка мышц плечевого пояса эспандером

Природа горной болезни. На высоте 4-5 км развивается высотная (горная) болезнь, которая характеризуется: слабостью, цианозом, снижением частоты сердечных сокращений, артериального давления, головными болями, снижением глубины дыхания. На высоте свыше 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания. Особенно большую опасность представляет быстрое развитие гипоксии, при котором потеря сознания может наступить внезапно. при повышенном атмосферном давлении Под повышенным давлением воздуха человеку приходится находиться во время водолазных и кессонных работ. При погружении под воду через каждые 10 м давление воды на поверхность тела увеличивается на 1 атм, следовательно, на глубине 90 м на человека действует давление около 10 атм.При погружении под воду в водолазных костюмах человек может дышать только воздухом под соответствующим погружению повышенным давлением. В этих условиях увеличивается количество газов, растворенных в крови, кислорода и особенно азота. Поэтому при погружении на большие глубины для дыхания применяются гелиево-кислородные смеси. Гелий почти нерастворим в крови и при дыхании им снижается сопротивление дыханию. Кислород добавляют к гелию в такой концентрации, чтобы его парциальное давление на глубине (т. е. при повышенном давлении) было близким к тому, которое имеется в обычных условиях.

Природа кессонной болезни. После работ на больших глубинах специального внимания требует переход человека от высокого давления к нормальному. При быстрой декомпрессии, например, при быстром подъеме водолаза, физически растворенные в крови и тканях газы значительно больше обычного, не успевают выделиться из организма и образуют пузырьки. Кислород и углекислый газ представляют меньшую опасность, т. к. они быстро связываются кровью и тканями. Особую опасность представляет образование пузырьков азота, которые разносятся кровью и закупоривают мелкие сосуды (газовая эмболия), что сопряжено с большой опасностью для жизни. Состояние, возникающее при быстрой декомпрессии, называется кессонной болезнью, она характеризуется болями в мышцах, головокружением, рвотой, одышкой, потерей сознания, а в тяжелых случаях могут возникать параличи. При появлении признаков кессонной болезни необходимо немедленно вновь подвергнуть пострадавшего действию высокого давления (такого, с которого он начинал подъем), чтобы вызвать растворение пузырьков азота, а затем декомпрессию производить постепенно.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

источник

Распространение возбуждения по миокарду

[17]
Типы (механизмы) проведения возбуждения по миокарду: 1. С участием специализированной проводящей системы сердца. 2. Передачей возбуждения от одного рабочего миокардиоцита к другому.
Скорость проведения возбуждения по миокарду: · предсердий составляет порядка 1 м/с · желудочков — 0,8 м/с · по проводящей системе — до 4-5 м/с

Т.е. возбуждение по проводящей системе сердца в 5 раз быстрее скорости распространения возбуждения по рабочему миокарду.

Напомню, что проведением возбуждения по нервным волокнам составляет 0,5 – 120 м[Б47] ·с -1 .

[18]

Во всех случаях проведение возбуждения осуществляется за счет наличия нексусов — специальных «щелевых контактов»[Б48] (рис[Б49] . 810132328).

Рис[Б50] . 810132328. Нексус. Объяснение в тексте

Нексусы, как правило, соединяют группы синхронно функционирующих клеток, образующих функциональный синцитий.

Как устроены нексусы? В каж­дой из двух соседних клеточных мембран находятся регулярно распределенные коннексоны, пронизывающие всю толщу мем­браны. Они расположены так, что в месте контакта клеток находятся друг против друга и их просветы оказываются на одной линии. У образованных та­ким образом каналов крупные внутренние диаметры и, значит, высокая проводимость для ионов. Через них могут приходить даже относительно крупные молекулы с молекулярной массой до 1000 (около 1,5 нм в по­перечнике). Коннексон состоит из субъединиц чис­лом до шести с молекулярной массой примерно 25000 каждая.

Но главное через нексусы свободно проходят ионы.

Принцип передачи возбуждения через нексус показан на рис[Б51] . 810132331.

Рис[Б52] . 810132331. Натриевые токи (INa+) при пе­ре­да­че возбуждения в химическом синапсе (1), электри­ческом синапсе или между мио­кар­ди­о­ци­та­ми­ (2).

Принцип передачи возбуждения между миокардиоцитами аналогичен принципу передачи возбуждения в электрическом синапсе и существенно отличается от принципа передачи возбуждения в химическом синапсе.

При возбуждении кле­тки А натриевый ток (INa+) входит в нее через откры­тые потенциалуправляемые натриевые каналы. При этом часть тока входит через участок мембранного контакта в клетку Б, вызывая ее деполяризацию. Уро­вень деполяризации клетки Б гораздо ниже, однако он может оказать­ся выше критического уровня деполяризации мембраны клетки Б и в ней генерируется потенциал действия.

В химическом синапсе входящие натриевые токи клетки А прерываются на пресинаптической мембране. Деполяризующие входящие натриевые токи на постсинаптической мембране клетки Б возникают при активации медиаторами рецепторуправляемых натриевых каналов. При достижении критического уровня деполяризации мембраны клетки Б открываются потенциалуправляемые натриевые каналы.

Таким образом, деполяризующие токи в клетке Б в химическом синапсе образуются в самой клетке Б, а в электрическом синапсе и при контакте миокардиоцитов деполяризующие токи в клетку Б входят из клетки А.

Для [Б53] миокарда важна регулируемость щелевых контактов. Каналы миокардиоцитов закрываются при снижении pH или повышении концентрации Са 2+ . Это неизбеж­но происходит в случае повреждения клеток или глубокою нарушения обмена. За счет такого меха­низма пораженные места изолируются от остальной части функционального синцития, и распростране­ние патологии ограничивается (например, при ин­фаркте миокарда).

В миокарде, как функциональном синцитии, возбуждение одной точки миокарда неизбежно вызывает возбуждение всех остальных областей миокарда. Это означает, что сердечная мышца отвечает на возбуждение по правилу «все или ничего», а градуальная зависимость, типичная для скелетной мышцы, здесь при нормальных условиях не наблюдается[Б54] .

Благодаря проводящей системе сердца волна возбуждения синхронно возбуждает рабочие миоциты.

Однако в атриовентрикулярном узле волна возбуждения на участке длиной 1,5‑2 мм задерживается, бежит с малой скоростью (2-5 см/с). Тем самым обеспечивается так называемая атриовентрикулярная задержка, благодаря которой возбуждение желудочков и их сокращение начинается через 100 мс после начала сокращения предсердий, а не раньше. Эта зона расположена в верхней части атриовентрикулярного узла.

Полагают, что снижение скорости проведения в этой зоне обусловлено особенностями контакта миоцитов — ход волокон перпендикулярен направлению волны возбуждения, что и обусловливает замедление ее движения по этому участку.

Важно отметить, что проведение волны возбуждения через атриовентрикулярный узел осуществляется лишь в том случае, если одновременно возбуждаются несколько миоцитов этого узла. Это защитный механизм от возникновения аритмий и появление эктопических очагов возбуждения.

Как правило, вначале возбуждается правое предсердие, а затем — с небольшим интервалом — левое предсердие.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8842 — | 7177 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник