Меню

Волокна быстрые и медленные скелетных мышц

Сила быстрых и медленных мышечных волокон

  • Физиология
  • История физиологии
  • Методы физиологии

Мышечные волокна: быстрые и медленные

Различают три вида мышц: поперечно-полосатые скелетные, поперечно-полосатые сердечные и гладкие.

Скелетные мышечные волокна подразделяются на быстрые и медленные. Скорость сокращения мышц различна и зависит от их функции. Например, быстро сокращается икроножная мышца, а глазная мышца сокращается еще быстрее.

Рис. Типы мышечных волокон

В быстрых мышечных волокнах более развит саркоплазматический ретикулум, что способствует быстрому выбросу ионов кальция. Их называют белыми мышечными волокнами.

Медленные мышцы построены из более мелких волокон, и их называют красными из-за их красноватой окраски, обусловленной высоким содержанием миоглобина.

Рис. Быстрые и медленные мышечные волокна

Таблица. Характеристика трех типов волокон скелетных мышц

Медленные оксидативные волокна

Быстрые оксидативные волокна

Быстрые гликолитические волокна

Главный источник образования АТФ

Активность ферментов гликолиза

Активность АТФазы миозина

Размер двигательной единицы

Диаметр двигательного аксона

Сила мышц

Силу мышцы определяют по максимальной величине груза, который она может поднять, либо по максимальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить усилие 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одновременно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, физиологических и физических факторов.

Расчет мышечной силы

Сила мышц возрастает с увеличением площади их геометрического и физиологического поперечного сечения. Физиологическое поперечное сечение мышцы представляет собой сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно ходу мышечных волокон.

В мышце с параллельным ходом волокон (например, портняжная мышца) площади геометрического и физиологического поперечных сечений равны. В мышцах с косым ходом волокон (межреберные) площадь физиологического сечения больше площади геометрического и это способствует увеличению силы мышц. Еще больше возрастают физиологическое сечение и сила у мышц с перистым расположением мышечных волокон, которое наблюдается в большинстве мышц тела.

Для того чтобы иметь возможность сопоставить силу мышечных волокон в мышцах с различным гистологическим строением, используют понятие абсолютной силы мышцы.

Абсолютная сила мышцы — максимальная сила, развиваемая мышцей, в перерасчете на 1 см 2 физиологического поперечного сечения. Абсолютная сила бицепса составляет 11,9 кг/см 2 , трехглавой мышцы плеча — 16,8, икроножной 5,9, гладких мышц — 1 кг/см 2 .

где Амс — мышечная сила (кг/см 2 ); Р — максимальный груз, который способна поднять мышца (кг); S — площадь физиологического поперечного сечения мышцы (см 2 ).

Сила и скорость сокращения, утомляемость мышцы зависят от процентного соотношения различных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у разных людей неодинаково.

Различают следующие типы двигательных единиц:

  • медленные неутомляемые (имеют красный цвет), они развивают небольшую силу сокращения, но могут длительно находиться в состоянии тонического напряжения без признаков утомления;
  • быстрые, легко утомляемые (имеют белый цвет), их волокна развивают большую силу сокращения;
  • быстрые, относительно устойчивые к утомлению, развивающие относительно большую силу сокращения.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено генетически и может значительно различаться. Чем больше в мышцах человека процент медленных волокон, тем более она приспособлена к длительной, но небольшой по мощности работе. Лица с высоким содержанием в мышцах быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

Сила мышцы увеличивается при ее умеренном растяжении. Одним из объяснений этого свойства мышц является то, что при умеренном растяжении саркомера (до 2,2 мкм) увеличивается вероятность образования большего количества связей между актином и миозином.

Рис. Соотношение между силой сокращения и длиной саркомера

Рис. Соотношение между силой мышцы и ее длиной

Сила мышц зависит от частоты нервных импульсов, посылаемых к мышце, синхронизации сокращения большого числа моторных единиц, преимущественного вовлечения в сокращение того или иного типа моторных единиц.

Сила сокращений увеличивается:

  • при вовлечении в процесс сокращения большего количества моторных единиц;
  • при синхронизации сокращения моторных единиц;
  • при вовлечении в процесс сокращения большего количества белых моторных единиц.

При необходимости развить небольшое усилие сначала активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. Если надо развить силу более 20-25% от максимальной, то в сокращение вовлекаются быстрые, легко утомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, посылаемых к мышечным волокнам.

При слабых сокращениях частота посылки нервных импульсов по аксонам мотонейронов составляет 5-10 имп/с, а при большой силе сокращения может доходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, что связано с увеличением в них количества миофибрилл. Прирост числа волокон незначителен.

При тренировке мышц у взрослых нарастание их силы связано с увеличением миофибрилл, а повышение их выносливости обусловлено увеличением числа митохондрий и получением АТФ за счет аэробных процессов.

Имеется взаимосвязь силы и скорости сокращения мышцы. Скорость сокращения мышцы тем больше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров). Она уменьшается при увеличении нагрузки. Тяжелый груз можно поднять только при медленном движении. Максимальная скорость сокращения, достигаемая при сокращении мышц человека, около 8 м/с.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность достигается при средней скорости укорочения мышц. Для мышц руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

Сила сокращения и мощность мышцы снижаются при развитии утомления.

источник

Строение, локализацияи общие свойства быстрых и медленных мышечных волокон

Тонус скелетных мышц связан с поступлением к мышце редких нервных импульсов, возбуждающих попеременно различные мышечные волокна. Эти импульсы возникают в мотонейронах спинного мозга, активность которых в свою очередь поддерживается и регулируется импульсами, исходящими как из вышележащих центров, так и с периферии от проприорецепторов («мышечных веретен»), находящихся в самих мышцах.

Тонус скелетных мышц имеет рефлекторную природу.

Типы скелетных мышечных волокон.Выделяют два типа скелетных мышечных волокон, каждый из которых имеет свои физиологические особенности. Это медленные (тонические) и быстрые (фазические) волокна. Их строение, локализация и общие свойства указаны в табл.13.3. Благодаря волокнам этих двух типов организм способен передвигаться и поддерживать позу. Быстрые волокна позволяют мышце сокращаться с высокой скоростью.

У человека все мышцы тела состоят из волокон двух типов одновременно, но обычно один из них доминирует. Это имеет физиологическое значение, поскольку тонические мышцы способны к медленному и длительному сокращению и их соответственно больше в мышцах-разгибателях, тогда как в сгибателях, предназначенных для быстрых реакций, преобладают фазические волокна.

Быстрые и медленные мышцы. Скорость сокращения мышц различна в зависимости от их функции. Так, икроножная мышца сокращается быстрее, чем камбаловидная, отвечающая за осуществление медленных реакций, а глазная мышца — еще быстрее. Как правило, в быстрых мышечных волокнах более развит саркоплазматический ретикулум, что способствует быстрому выбросу кальция, и они менее богато васкуляризированны. Их называют «белыми» мышечными волокнами. Медленные мышцы построены из более мелких волокон. Такие мышцы часто называют «красными» из-за красноватой окраски, связанной с высоким содержанием миоглобина.

Советуем прочитать:  Способность живых существ напряжением мышц производить движение

Особенности скелетных мышц

Поскольку мышцы способны развивать силу только при укорочении (т. е. тянуть, но не толкать), ясно, что для того, чтобы сместить кость, а затем вернуть ее в прежнее положение, необходимы, по меньшей мере, две мышцы или две группы мышц. Пара мышц, действующих таким образом, называются антагонистами. В табл. 13.4 приведена классификация мышц по типу производимых ими движений. Очень редко в движении участвует лишь одна пара мышц-антагонистов. Обычно каждое отдельное движение обеспечивается группами мышц, называемых синергистами.

Типы движений, производимых парами мышц-антагонистов

Вид производимого движения

Сгибает конечность, притягивая два скелетных элемента друг к другу

Распрямляет конечность, оттягивая два скелетных элемента друг от друга

Тянет конечность по направлению к продольной оси тела

Отводит конечность от продольной оси тела

Тянет дистальный отдел конечности вперед

Оттягивает дистальный отдел конечности назад

Поворачивает конечность целиком или ее часть в одном из суставов

Величина сокращения (степень укорочения) мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект; при сильном растяжении сокращение мышцы ослабляется. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает.

Для измерения силы мышцы определяют либо максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развивать напряжение, достигающее 100—200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15—30 млн, они могли бы развить напряжение в 20—30 тонн, если бы все одновременно тянули в одну сторону.

Сила мышцы при прочих равных условиях зависит от ее поперечного сечения. Чем больше физиологическое поперечное сечение мышцы, т. е. сумма поперечных сечений всех ее волокон, тем больше груз, который она в состоянии поднять. Физиологическое поперечное сечение совпадает с геометрическим только в мышцах с продольно расположенными волокнами; у мышц с косыми волокнами сумма поперечных сечений волокон может значительно превышать геометрическое поперечное сечение самой мышцы (рис. 13.11). По этой причине сила мышцы с косыми волокнами значительно больше, чем сила мышцы той же толщины, но с продольными волокнами. Чтобы иметь возможность сравнивать силу разных мышц, максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения. Таким образом вычисляют абсолютную мышечную силу. Абсолютная сила, выраженная в килограммах на 1 см 2 , икроножной мышцы человека равна 5,9, сгибателя плеча — 8,1, жевательной мышцы — 10, двуглавой мышцы плеча — 11,4, трехглавой мышцы плеча — 16,8, гладких мышц — 1.

Рис. 13.11. Типы строения различных мышц (по А.А. Ухтомскому):

а — мышцы с параллельным ходом волокон; б — веретенообразная мышца;

Большинство мышц человека имеет перистое строение. Перистая мышца имеет большое физиологическое сечение, а потому обладает большой силой.

Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы, т. е. выражается в килограммометрах или граммсантиметрах.

Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая зависимость. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза, работа сначала увеличивается, а затем постепенно падает. При очень большом грузе, который мышца неспособна поднять, работа становится вновь равной нулю. На рис. 13.12 показаны соотношения, существующие между величиной нагрузки, степенью укорочения мышцы и величиной работы. Как видно, наибольшую работу мышца совершает при некоторых средних нагрузках: в данном случае при 200—300 г. Мощность мышцы, измеряемая величиной работы в единицу времени, также достигает максимальной величины при средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получили название правила средних нагрузок.

Рис. 13.12. Соотношение нагрузки (в граммах), сокращения

(в миллиметрах подъема груза) и работы (в грамм-миллиметрах)

икроножной мышцы лягушки (по Уоллеру)

Работа, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются (это происходит, когда мышца сокращается в изометрическом режиме), называется статической. Статическая работа более утомительна, чем динамическая.

Механические свойства мышц

Длина, сила и скорость сокращения — наиболее важные механические свойства мышц. Существует некая оптимальная длина мышцы, при которой сокращение максимально. Это показывает опыт по изучению изометрических сокращений изолированной мышцы, фиксируемых при различных значениях исходной длины (рис. 13.13). Если исходная длина мышцы мала, что и усилие, развиваемое ею при сокращении, невелико; при растяжении ее до определенного уровня (точка 2 на рис. 13.13, а) это усилие достигает максимального значения. Если же мышца перерастянута (точка 3), сила ее сокращения вновь падает. Для скелетных мышц это взаимоотношение между длиной и силой не имеет большого значения, однако в сердечной мышце оно играет важную роль.

Увеличение нагрузки на мышцу снижает скорость ее сокращения (рис. 13.13, б)

Рис. 13.13. Зависимость между силой, напряжением и длиной мышцы, а — при увеличении длины мышцы до точки 2 напряжение и сила ее сокращения возрастают, а при дальнейшем растяжении мышцы — падают (3). б — зависимость скорости сокращения мышцы от нагрузки: чем больше нагрузка, тем меньше скорость сокращения

Мышцы, сокращаясь, превращают весьма значительную часть (1/4—1/3) химической энергии в механическую работу, выделяя при этом теплоту; это — один из главных источников образования ее в организме.

Обычно мышцы действуют на кости, соединенные между собой суставами, так что получается тот или иной род рычага.

Особенно много в человеческом теле одноплечих рычагов второго рода: точка приложения силы находится между точкой опоры и точкой сопротивления (центром тяжести той части тела, которая приводится в движение). Например, локтевое сочленение. Когда в нем происходит сгибание, точка опоры лежит на линии соединения плечевой и локтевой костей; неподалеку от этой точки в самом верхнем отделе предплечья, помещается точка приложения силы (место прикрепления двуглавой и плечевой мышц, сгибающих предплечье), сопротивление (центр тяжести предплечья и кисти) располагается дистальнее. Так как у этого рычага плечо сопротивления длиннее плеча приложения силы, приходится применять относительно большую силу для того, чтобы преодолеть сопротивление; при этом выигрывается время, почему рычаг этого рода носит название рычага скорости.

Сокращение мускула не всегда приводит в движение кость, к которой он прикрепляется; нередко сокращение удерживает ее в определенном положении (иммобилизация). Движения, при которых работе одного мускула обязательно сопутствует сокращение нескольких других, иммобилизующих место его начала, называются координированными, или сочетанными. Редко мускул сокращается один; самые, казалось бы, простые движения частей тела обусловлены работой нескольких мышц. Так, при движениях в плечевом суставе работают не только мышцы, идущие от лопатки и ключицы к плечевой кости и действующие непосредственно на последнюю, но в известной мере сокращаются также мышцы, иммобилизующие кости плечевого пояса; последние играют роль опоры для мышц, приводящих в движение плечевую кость.

Часто мускул соединяет смежные кости, образующие одно сочленение; кроме мышц такого рода, называемых односуставными, так как они действуют лишь на один сустав, есть много мускулов, которые идут мимо двух и более суставов; они называются двусуставными или многосуставными мышцами; последние отличаются более сложным действием, так как приводят в движение не только часть скелета, к которой прикрепляются, но могут изменять и положение костей, находящихся на пути от начала мышцы до ее прикрепления.

Советуем прочитать:  Уменьшились мышцы на бедрах и ягодицах

источник

Медленные мышечные волокна (окислительные)

Содержание

Красные мышечные волокна [ править | править код ]

Медленные мышечные волокна — это медленно сокращающиеся волокна, которые отличаются небольшой силой, но низкой утомляемостью. Они небольшие по размеру и плохо гипертрофируются. Участвуют в выполнении длительной низкоинтенсивной работы на выносливость (бег, ходьба), то есть при аэробных нагрузках. За счет высокого содержания миоглобина имеют красный цвет.

Все скелетные мышцы состоят из мышечных клеток — миоцитов или мышечных волокон. Выделяют разные типы миоцитов, которые специализируются на разных видах нагрузки. По ряду структурно-функциональных характеристик мышечные клетки скелетной мускулатуры классифицируются на два типа:

  • Медленные мышечные волокна, также называемые красные мышечные волокна или окислительные мышечные волокна (ОМВ) — подтипа I (о них пойдет речь в данной статье)
  • Быстрые или белые мышечные волокна или гликолитические мышечные волокна (ГМВ) — подтипа IIa [1] , IIb.

Мотонейроны медленных волокон имеют наиболее низкие пороги их активации, меньшие толщина аксона и скорость проведения возбужде­ния по нему. Аксон разветвляется на небольшое число концевых веточек и иннервирует небольшую группу мышечных волокон. У мотонейронов медленных волокон сравнительно низкая частота разрядов (6-10 имп/с). Они начинают функционировать уже при малых мышечных усилиях. Так, мотонейроны камбаловидной мышцы человека при удобном стоянии работают с частотой 4 имп/с. Ус­тойчивая частота их импульсации составляет 6- 8 имп/с. С повыше­нием силы сокращения мышцы частота разрядов мотонейронов мед­ленных волокон повышается незначительно (до 25 имп/с). Мотонейроны медленных волокон способны поддерживать постоянную частоту разрядов в течение десятков минут.

Мышечные волокна медленных волокон развивают небольшую силу при сокращении в связи с наличием в них меньшего, по сравнению с быстрыми волокнами, количества миофибрилл. Скорость сокращения этих волокон в 1,5-2 раза меньше, чем быстрых. Основными при­чинами этого являются низкая активность миозин АТФ-азы и мень­шие скорость выхода ионов кальция из саркоплазматического ре-тикулума и его связывания с тропонином в процессе возбуждения волокна.

Мышечные волокна медленных волокон малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно, в среднем, приходится 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислоро­да. В их цитоплазме имеется большое количество митохондрий и высокая активность окислительных ферментов. Все это определяет существенную аэробную выносливость данных мышечных волокон и позволяет выполнять работу умеренной мощности длительное время без утомления.

Для чего нужны медленные мышечные волокна [ править | править код ]

Медленные или красные мышечные волокна выполняют следующие функции в организме:

  • Динамическая работа или аэробика — длительный бег, плавание или велогонка. Этот тип волокон преобладает у марафонцев, велогонщиков и других легкоатлетов.
  • Поддержание позы (мышцы спины).
  • Производство тепла.

Как уже было сказано выше, этот тип волокон богат миоглобином — белком, который запасает в себе кислород. Во время выполнения аэробных физических нагрузок митохондрии красных мышечных волокон производят энергию за счёт окисления глюкозы кислородом. Миоглобин способен отдавать кислород митохондриям, если с кровью его поступает недостаточно. Медленные мышечные волокна хорошо кровоснабжаются, поэтому кислорода к ним поступает значительно больше, чем к быстрым миоцитам.

Красные мышечные волокна и бодибилдинг [ править | править код ]

В исследованиях было продемонстрировано, что медленные мышечные волокна обладают слабой способностью к гипертрофии (разрастанию). Другие испытания показали, что соотношение быстрых и медленных мышечных волокон практически не меняется в результате специализированных тренировок. Это значит, что если в вашем организме преобладают красные мышечные волокна, то ваши результаты в бодибилдинге или пауэрлифтинге будут хуже, чем у среднего человека, в тоже время вы будете иметь преимущество в легкоатлетических видах спорта.

Как определить соотношение волокон? [ править | править код ]

Воспользуйтесь специальной разработанной экспертной системой, которая предложит выполнить вам несколько измерений, автоматически проанализирует их и выдаст адаптированный результат. Эта система имеет очень низкую погрешность, так как использует сразу несколько критериев расчета.

  • Определение соотношения быстрых и медленных мышечных волокон
  • Расчет вашего генетического потенциала в бодибилдинге — система может точно определить ваши генетические возможности и предсказать, каких результатов вы можете достигнуть в бодибилдинге или пауэрлифтинге.

Данная экспертная система проводит расчет по нескольким важнейшим критериям: соотношение различных типов волокон, окружность запястья, скорость метаболизма, наличие заболеваний, длина мышцы и др.

Тренировка [ править | править код ]

В рунете существует система взглядов на рост медленных волокон (далее ММВ, они-же тип I):

  1. Они не растут от больших весов
  2. Они не растут от работы на полную амплитуду, так как нужна особая амплитуда для их роста, работа без расслабления мышц
  3. Для медленных волокон нужны медленные движения
  4. Невозможна смена типа волокна с II на I
  5. Отдельной темой является прием фармакологии для их роста и роста выносливости
  6. Работа низкой интенсивности (на АнП и ниже АнП) рекрутирует только медленные волокна, а спринты, предельные ускорения — все волокна

Медленные волокна не растут от больших весов [ править | править код ]

Медленные волокна гипертрофируются от работы и с малыми, и с большими и со средними весами. [2] Более того, обнаружены случаи, когда в течение одного года, наблюдая за реакцией пожилых людей на тренировку, ничего кроме роста медленных волокон у них не было от работы с 75% от 1ПМ, и лишь к концу года к росту медленных волокон добавился рост быстрых. [3] Изучения синтеза белка, расхода аминокислот, активации клеток сателлитов также показывают, что медленные волокна реагируют точно также как и быстрые на работу с 70-80% от 1ПМ. [4] [5] [6]

Также существует факт смены цепочек миозина и типа волокон по скорости сокращения от тренировки, равно как и от отсутствия тренировок из-за травм и гиподинамии. Причем именно работа с большими весами снижает уровень миозина IIX. [7]

Работая с маленькими весами вы не повышаете рост медленных волокон, а, скорее, снижаете эффективность роста быстрых волокон. Но они, по-прежнему, активируются и растут даже от маленьких весов, особенно в тройных подходах один за другим. Помимо того, что от больших весов идет рост медленных волокон, но от них еще идет и рост ядер в клетках. [8]

Также работа с большими весами у тяжелоатлетов не только ведет к смене скорости сокращения мышц, но и вызывает рост митохондрий. [9] Но это происходит без роста МПК, что указывает на недостаточность одного лишь роста митохондрий и смены типа волокон. И подчеркивает, что нужна транспортная система для кислорода, которая не появляется просто от того, что у вас есть медленные волокна и митохондрии.

Медленные волокна не растут от работы на полную амплитуду [ править | править код ]

Мы уже знаем, что медленные волокна гипертрофируются от любых весов при любой амплитуде. При работе с маленьким весом без расслабления мышц вы по-прежнему тренируете все свои мышцы, просто они включаются не сразу, если вес мал, а постепенно. [10] Лишь по мере продолжения подхода, или серии подходов всё новые и новые быстрые волокна типа II включаются в работу. Взяв 50% от 1ПМ без расслабления мышц, можно сказать, что вы тренируете сразу все свои волокна. Польза пампинга не столько в росте медленных волокон, сколько в массе других положительных эффектов, например, ангиогенезе (капилляризации) [11] , в артериогенезе (стимуляции коллатералей [12] , улучшении кровоснабжения мышц). Потенциально, ишемия мышц может стимулировать и эритропоэз, рост объема крови. Т.е. пампинг — это полезное средство для развития транспортных систем, для роста выносливости. И это среди прочих полезных средств упоминается в обзорах. [13] [14] [15] [16] [17] [18] [19]

Советуем прочитать:  Упражнения лечебной гимнастики на мышцы спины

Невозможна смена типа волокна со II на I [ править | править код ]

Действительно, мышечная композиция — это генетика. Но генетика мотонейрона, если вы им не пользуетесь, например, вследствие лежачего образа жизни или травм, ведет к тому, что медленные волокна становятся быстрыми, а после возврата к тренировкам — опять медленными. Также на мышечную композицию [20] могут влиять электростимуляция [21] и состояние щитовидной железы. Если вследствие мутаций у вас нарушено преобразование быстрых волокон в медленные [22] , то рост капилляров и митохондрий будет бесполезен. [23]

Прием фармакологии для роста медленных волокон и роста выносливости [ править | править код ]

Если мышцы не растут, то зачастую их рост начинают стимулировать приёмом курса тестостерона. НО! У медленных волокон реакция рецепторов на изменение уровня тестостерона отсутствует. Они реагируют на гормон роста, ИФР-1, инсулин [24] . Это не значит, что их надо принимать, чтобы стать выносливее. Приём тестостерона [25] , равно как и ГР, нарушает работу митохондрий, а последующее обнуление тестостерона [26] после прекращения курса дополнительно бьет по митохондриям. Надо лишь иметь здоровые естественные уровни гормонов, и этого достаточно для здоровья митохондрий. [27] [28] [29] Не менее важным является и состояние щитовидной железы для здоровья митохондрий. [30] Например, у женщин есть гипертрофия мышц от эстрогена, и именно по рецепторам эстрогена «работает» экдистерон. [31] [32]

Работа низкой интенсивности рекрутирует медленные волокна [ править | править код ]

В ряде исследований существуют утверждения, что при низкой интенсивности работы тратится жир и гликоген только в медленных волокнах, а при предельной интенсивности — во всех волокнах. Но в чём секрет прогресса от объемных, низкоинтенсивных тренировок? Дело в том, что по мере истощения гликогена всё новые и новые волокна включаются в работу [33] [34] [35] [36] , и если новичку достаточно 30-60 минут [37] для проработки всех свои мышц, то профессиональному спортсмену (в видах спорта на выносливость) для истощения гликогена придется либо делать много спринтов [38] либо дольше выполнять объемную тренировку. Не зря находят корреляцию активности PGC-1 со степенью истощения гликогена [39] . Спринты не стимулируют рост ОЦК и гемоглобиновой массы [40] , а объемные тренировки — да [41] .

Также важно подобрать оптимум отдыха и времени спринтов для получения эффекта от тренировок, причём индивидуально. [42] Спортсмены элитного уровня в ЦВС делают большие объемы тренировок, и, понимая, что они рекрутируют 100% мышечных волокон, становится ясно, почему они получают от них результат. [43] Интервалы же для нетренированных активных людей не имели никакого преимущества перед объемными тренировками. [44]

Для медленных волокон нужны медленные движения [ править | править код ]

Разница в скорости сокращений между 2 типами мышечных волокон не имеет никакого значения при силовых тренировках со штангой. Можно научиться включать быстрые сокращения без медленных, но это будет иметь нулевой практический смысл в культуризме [45] , так как единственное значение в скорости сокращения заключается в том, что быстрые волокна при резких движениях могут рекрутироваться раньше медленных, медленные могут раньше отключаться [46] . То есть дерганые движения с маленькими весами прорабатывают не медленные, а быстрые волокна, но это несущественно в рамках того, что работа без расслабления мышц всё равно будет включать быстрые волокна. Также то, что быстрые волокна при быстрых движениях рекрутируются раньше медленных, может объяснить нам, почему люди с большой долей ММВ прыгают низко, а с большой долей быстрых — высоко [47] [48] .

источник

Характеристика быстрых и медленных скелетных мышц

Метаболизм мышц

Различают белые и красные мышечные волокна. В красных мышцах содержится много миоглобина, который служит внутриклеточным резервом О2. Красные мышцы содержат многочисленные митохондрии с плотно упакованными складчатыми мембранами. Они расположены в непосредственной близости к сократительным миофибриллам, которые используют АТФ, образующуюся в митохондриях при окислительном фосфорилировании. Для этого класса скелетных мышц характерно медленное сокращение и способность длительное время оставаться в состоянии сокращения.

В мышцах, функции которых требуют коротких, быстрых движений, мало миоглобина и митохондрий, поэтому их называют белыми мышцами. Они содержат большие запасы гликогена в цитоплазме и их функция зависит преимущественно от анаэробного гликолиза как источника АТФ.

Признак Быстрые скелетные мышцы Медленные скелетные мышцы
Цвет Белый Красный
Миоглобин Нет Есть
Активность миозиновой АТФ-азы Высокая Низкая
Утилизация энергии Высокая Низкая
Частота сокращений Высокая Низкая
Длительность сокращений Малая Большая

У человека нет специализированных мышц, но есть специализированные волокна: в мышцах-разгибателях больше «белых» волокон, в мышцах спины больше «красных» волокон.

Мышца потребляет огромное количество энергии. То количество АТФ, которое имеется в мышце, может поддерживать сократительную активность всего лишь на протяжении доли секунды. Однако в мышцах позвоночных богатые энергией фосфатные связи запасаются в виде креатинфосфата. Это макроэргическое соединение в термодинамической шкале стоит выше АТФ, поэтому при участии креатинкиназы (КК) может происходить перенос фосфата от креатинфосфата к АДФ с образованием АТФ (субстратное фосфорилирование).

Креатинфосфат + АДФ « АТФ + креатин

В работающей мышце запас креатинфосфата быстро истощается, а, следовательно, снижается и содержание АТФ. При этом возрастает концентрация АДФ и Рн, а также уровень АМФ.

Анаэробный гликолиз и гликогенолиз. Не требуют присутствия кислорода (анаэробные процессы). Обладают большим резервом субстратов. Используется гликоген мышц (2 % от веса мышцы) и глюкоза крови, полученная из гликогена печени. Недостатки следующие: небольшая эффективность – 3 АТФ на один глюкозный остаток гликогена; накопление недоокисленных продуктов (лактат); анаэробный гликолиз начинается не сразу – только через 10-15 с после начала мышечной работы.

Окислительное фосфорилирование. Преимущества: это наиболее энергетически выгодный процесс – синтезируется 38 молекул АТФ при окислении одной молекулы глюкозы. Имеет самый большой резерв субстратов: может использоваться глюкоза, гликоген, глицерин, кетоновые тела. Продукты распада (CO2 и H2O) практически безвредны. Недостаток: требует повышенных количеств кислорода.

Важную роль в обеспечении мышечной клетки кислородом играет миоглобин, у которого сродство к кислороду больше, чем у гемоглобина: при парциальном давлении кислорода, равном 30 мм.рт.ст., миоглобин насыщается кислородом на 100 %, а гемоглобин — всего на 30 %. Поэтому миоглобин эффективно отнимает у гемоглобин доставляемый им кислород.

Основные источники энергии в мышечной ткани в покое: β-окисление жирных кислот, кетоновые тела; при работе (в зависимости от снабжения О2) – анаэробный гликолиз, гликогенолиз, ЦТК.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9427 — | 7320 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник