Меню

Внутренние органы мышцы стенок сосудов

Гладкие мышцы

Эти мышцы образуют мышечные слои стенок желудка, ки­шечника, мочеточников, бронхов, кровеносных сосудов и других внутренних органов. Они построены из веретенообразных одно­ядерных мышечных клеток. Гладкие мышцы разделяются на две основные группы: мультиунитарные и унитарные. Мультиунитарные мышцы функционируют независимо друг от друга, и каж­дое волокно может иннервироваться отдельным нервным окончанием. Такие волокна обнаружены в ресничной мышце глаза, ми­гательной перепонке и мышечных слоях некоторых крупных сосудов, к ним относятся мышцы, поднимающие волосы. У унитарных мышц волокна настолько тесно переплетены, что их мембраны могут сливаться, образуя электрические контакты (нексусы). При раздражении одного волокна за счет этих контактов ПД быстро распространяются на соседние волокна. Поэтому, несмотря на то, что двигательные нервные окончания расположены на не­большом числе мышечных волокон, в реакцию вовлекается вся мышца. Такие мышцы имеются в большинстве органов: пищева­рительном тракте, матке, в мочеточниках.

Особенностью гладких мышц является их способность осу­ществлять медленные и длительные тонические сокращения. Медленные, ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают пере­мещение содержимого этих органов. Длительные тонические со­кращения гладких мышц обеспечивают функционирование сфинктеров полых органов, которые препятствуют выходу их со­держимого.

Гладкие мышцы стенок кровеносных сосудов, особенно арте­рий и артериол, также находятся в состоянии постоянного тони­ческого сокращения. Изменение тонуса мышц стенок артериаль­ных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов. Важным свойством гладких мышц является их пластичность, т.е. способ­ность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирова­ния полых органов. Например, пластичность мышц мочевого пу­зыря по мере его наполнения предотвращает избыточное повы­шение давления.

Сильное и резкое растяжение гладких мышц вызывает их со­кращение, что обусловлено нарастающей при растяжении депо­ляризацией клеток, которая обеспечивает автоматию гладкой мышцы. Такое сокращение играет важную роль в авторегуляции тонуса кровеносных сосудов, а также способствует непроизволь­ному опорожнению переполненного мочевого пузыря в тех слу­чаях, когда нервная регуляция отсутствует в результате повреж­дения спинного мозга.

В гладких мышцах тетаническое сокращение возникает при низкой частоте стимуляции. В отличие от скелетных, гладкие мышцы способны развивать спонтанные тетанообразные сокра­щения в условиях денервации и даже после блокады интраму-ральных ганглиев. Такие сокращения возникают вследствие ак­тивности клеток, обладающих автоматией (пейсмекерных кле­ток), которые отличаются по электрофизиологическим свойствам от других мышечных клеток. В них появляются пейсмекерные по­тенциалы, деполяризующие мембрану до критического уровня, что вызывает возникновение потенциала действия.

Особенностью гладких мышц является их высокая чувстви­тельность к медиаторам, которые оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетилхолина на препарат мышцы толстой кишки частота ПД воз­растает. Вызываемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее сокращение. Норадреналин, напротив, гиперполяризует мембрану, снижая частоту ПД и величину тетануса.

Возбуждение гладкомышечных клеток вызывает повышение концентрации кальция в саркоплазме, что активирует сократи­тельные структуры. Так же как сердечная и скелетная мышцы, гладкая мышца расслабляется при снижении концентрации ио­нов кальция. Расслабление гладких мышц происходит медленнее, так как удаление ионов кальция замедлено.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Мышечная система человека

  • Физиология
  • История физиологии

Общий обзор мышечной системы человека

У позвоночных животных и человека различают три разных по строению группы мышц:

  • поперечно-полосатые мышцы скелета;
  • поперечно-полосатая мышца сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Гладкие мышцы

Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным.

Гладкие мышцы образуют мышечный слой стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых органов. Они состоят из веретенообразных мышечных волокон и не имеют поперечной исчерченности, так как миофибриллы в них расположены менее упорядоченно. В гладких мышцах отдельные клетки соединяются между собой специальными участками наружных мембран — нексусами. За счет этих контактов потенциалы действия распространяются с одного мышечного волокна на другое. Поэтому в реакцию возбуждения быстро вовлекается вся мышца.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Рис. 2. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Гладким мышцам присущи те же основные свойства, что и поперечнополосатым скелетным мышцам, но и некоторые особые свойства:

  • автоматия, т.е. способность сокращаться и расслабляться без внешних раздражений, а за счет возбуждений, возникающих в них самих;
  • высокая чувствительность к химическим раздражителям;
  • выраженная пластичность;
  • сокращение в ответ на быстрое растяжение.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. Скелетные мышцы образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. Сила мышцы пропорциональна количеству волокон, составляющих брюшко мышцы.

Рис. 3. Функции мышечной ткани

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При сокращении концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

Советуем прочитать:  Боли мышц правой стороны спины

У двуосного сустава (эллипсоидный, мышелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемешает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Строение поперечно-полосатых мышц

Скелетные мышцы состоят из большого числа мышечных волокон, которые объединяются в мышечные пучки.

В одном пучке содержится 20-60 волокон. Мышечные волокна представляют собой клетки цилиндрической формы длиной 10-12 см и диаметром 10-100 мкм.

Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме находятся все компоненты животной клетки и вдоль оси мышечного волокна располагаются тонкие нити — миофибриллы, Каждая миофибрилла состоит из протофибрилл, в состав которых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы разделены между собой перегородками, которые называются Z-мембранами, на участки — саркомеры. На обоих концах саркомеров к Z-мембране прикреплены тонкие актиновые нити, а в середине расположены толстые миозиновые нити. Нити актина своими концами частично входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полоски в темном диске. При электронной микроскопии скелетные мышцы выглядят исчерченными (поперечно-полосатыми).

Рис. 5. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка

На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков (рис. 5), которые расположены под углом 120° по отношению к оси миозиновой нити. Актиновые филаменты выглядят в виде двойной нити, закрученной в двойную спираль. В продольных бороздках актиновой спирали находятся нити белка тропомиозина, к которым присоединен белок тропонин. В состоянии покоя молекулы белка тропомиозина расположены таким образом, чтобы предотвращать прикрепление поперечных мостиков миозина к актиновым нитям.

Рис. 6. А — организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Рис. 7. Строение актина и миозина

Во многих местах поверхностная мембрана углубляется в виде микротрубок внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-система). Параллельно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл расположена система продольных трубочек (саркоплазматический ретикулум). Концевые расширения этих трубочек — терминальные цистерны — подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция.

Механизм сокращения скелетной мышцы

Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Рис. 7. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из ЦНС. Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Рефлекторный характер деятельности мышц и координация мышечных сокращений

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл.

Мышечные волокна обладают тремя основными свойствами:

  • возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия;
  • проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения;
  • сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Советуем прочитать:  Укрепление мышц после операции на простату

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается.

Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофибриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ре- синтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.

источник

Мышечная система.

Скелет человека фиксирован мышцами и связками.

Мышцы являются активными элементами аппарата движения. Мышцы, прикрепляясь к костям, приводят их в движение, участвуют в образовании стенок полостей тела — ротовой, грудной, брюшной, таза, входят в состав стенок некоторых внутренних органов. С помощью мышц тело человека удерживается в равновесии, перемещается в пространстве, осуществляются дыхательные и глотательные движения, формируется мимика.

Мышца образованна мышечной тканью, которая состоит из мышечных волокон. Эти волокна в свою очередь состоят из мышечных клеток (миоцитов). В организме человека3 вида мышечной ткани: гладкая; скелетная; сердечная.

В зависимости от того, какая ткань составляет основу мышцы, выделяют гладкие и поперечнополосатые мышцы. Гладкие мышцы представлены гладкой

мышечной тканью, которая образует стенки внутренних органов (например: сосудов, кишечника, мочевого пузыря). К поперечнополосатым мышцам относят скелетные мышцы и сердечную мышцу, которые представлены поперечнополосатыми мышечными волокнами. Мышечные волокна скелетной мышцы собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы сокращаются (укорачиваются). Волокна сердечной мышцы в определенных участках переплетаются, поэтому сокращение мышцы происходит быстро.

В каждой мышце различают тело (мышечное брюшко — сокращающаяся часть мышцы) и сухожилие (несокращающаяся часть). Мышечное брюшко состоит из мышечных волокон. Длинные мышцы имеют тело и головок. Мышцы прикрепляется к костям с помощью сухожилий. Как правило, мышца имеет два сухожилия – это прочные гибкие волокнистые структуры. Они заставляют кости двигаться в ответ на сокращения или расслабления мышц. Мышцы снабжены нервами и сосудами.

Сгибатели и разгибатели — две группы противоположно действующих мышц. Сгибание в суставе осуществляется при сокращении мышц-сгибателей и одновременно расслаблении мышц-разгибателей. Практически передние мышцы с вертикальной ориентацией волокон обычно являются сгибателями, а задние мышцы — разгибателями (мышцы антогонисты). Только в коленном и голеностопном суставах передние мышцы вызывают разгибание, а задние мышцы — сгибание.

Мышцы туловищапредставлены мышцами спины, груди и живота. Мышцы спины образуют две группы: поверхностную и глубокую. К первой группе относятся трапециевидная, широчайшая мышца спины, мышца, поднимающая лопатки и др. Ко второй группе — мышцы, которые занимают все пространство между позвонками и углами ребер.

К основным мышцам живота относят мышцы, составляющие брюшную стенку: наружная и внутренняя косые, поперечная и прямая мышцы живота.

Грудные мышцы образуют поверхностные мышцы груди и собственные мышцы грудной клетки. К поверхностным относятся большая грудная мышца, малая грудная мышца, подключичная, передняя зубчатая мышцы. Они приводят в движение плечевой пояс и верхние конечности. К собственным мышцам грудной клетки относятся наружные и внутренние межреберные мышцы, которые принимают участие в движении грудной клетки при дыхании.

Мышцы шеи подразделяют на поверхностные и глубокие. Поверхностные -подкожная мышца, грудино-ключично-сосцевидная и мышцы, прикрепляются к подъязычной кости. Глубокие мышцы — это передняя, средняя и задняя лестничные мышцы, длинная мышца головы и др.

Мышцы головы подразделяются на две группы: жевательные и мимические.

Мышцы верхних конечностей представлены мышцами плечевого пояса (дельтовидная, надостная, подостная, малая и большая круглые, подлопаточная) и мышцы свободной конечности (мышцы передней и задней группы).

Мышцы передней группы — мышцы плеча (клювовидно-плечевая, двуглавая, плечевая) и предплечья (семь сгибателей кисти, два пронатора, плечелучевая мышца). Мышцы задней группы — мышцы плеча (трехглавая, локтевая) и предплечья (девять разгибателей и супинатор).

Мышцы нижних конечностей подразделяются на мышцы тазового пояса (подвздошно-поясничная и три ягодичные мышцы) и мышцы свободных нижних конечностей (мышцы бедра, голени и стопы).

На передней поверхности бедра располагаются портняжная мышца и четырехглавая мышца. На задней поверхности — двуглавая мышца бедра. полусухожильная, полуперепончатая мышцы. На внутренней поверхности — тонкая гребенчатая, длинная, короткая и большая приводящие мышцы. На передней поверхности голени находятся мышцы — разгибатели стопы (большеберцовая мышца) и пальцев, на задней стороне — их сгибатели. Важнейшая из них — икроножная мышца.

Скелетные мышцы составляют активную часть аппарата движения. Работа этих мышц подчинена воле человека, поэтому они называются произвольными. Под воздействием импульсов, поступающих по нервам из ЦНС, скелетные мышцы действуют на костные рычаги, активно изменяют положение тела человека. Таким образом, основная функция мышечной системы — приведение в движение скелет.

4.1. Система кровообращения

Кровообращение — это непрерывное движение крови по сосудам. Система кровообращения включает в себя сердце и кровеносные сосуды.

Функции системы кровообращения:

1. Транспортная: доставка к окружающим тканям кислорода и питательных веществ;удаление углекислого газа и продуктов распада;перенос биологически активных веществ.

2. Объединительная — объединяет организм в единое целое.

Движение крови в организме происходит по двум замкнутым системам сосудов, соединенных с сердцем, — малому и большому кругам кровообращения. Движение крови в организме происходит по двум замкнутым системам сосудов, соединенных с сердцем — малому и большому кругам кровообращения.

Большой круг кровообращения разносит кровь ко всем органам и тканям; начинается аортой, выходящей из левого желудочка, и заканчивается полыми венами, впадающими в правое предсердие. Выходя из левого желудочка, аорта образует дугу, а затем направляется вниз вдоль позвоночника. Та часть аорты, которая находится в грудной полости, называется грудной аортой, а расположенная в брюшной полости – брюшной аортой. От дуги аорты и грудной части отходят сосуды, идущие к голове, органам грудной полости и верхним конечностям. От брюшной аорты сосуды отходят к внутренним органам. В поясничном отделе брюшная аорта разветвляется на подвздошные артерии нижних конечностей. В тканях кровь отдает кислород, насыщается диоксидом углерода и возвращается по венам от верхней и нижней частей тела, образующих крупные верхнюю и нижнюю полые вены, впадающие в правое предсердие. Кровь из кишечника и желудка оттекает к печени, образуя систему воротной вены, и в составе печеночной вены поступает в нижнюю полую вену.

Советуем прочитать:  Строение и функции скелетных мышц реферат

Малый круг кровообращения предназначен для прохождения венозной крови через легкие и превращения ее в артериальную. Начинается в правом желудочке и оканчивается в левом предсердии. Из правого желудочка выходит легочной ствол (делится на правую и левую легочные артерии), несущие венозную кровь в легкие. Здесь легочные артерии распадаются на сосуды более мелкого диаметра, переходящие в мельчайшие капилляры, густо оплетающие стенки альвеол, в которых происходит обмен газов. После этого кровь, насыщенная кислородом (артериальная), оттекает по четырем легочным венам в левое предсердие. По легочным артериям течет венозная кровь, а по легочным венам — артериальная кровь.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9882 — | 7715 — или читать все.

источник

Строение стенок сосудов

Стенка капилляров тонкая, состоит из одного слоя эндотелиальных клеток. Соединяясь между собой капилляры, образуют капиллярные сети. Стенка артерий, также как и вен имеет четыре слоя: защитная фиброзная оболочка; гладкие мышцы и эластические волокна; соединительная ткань; гладкий эндотелиальный клеточный слой.

Стенки артерий оказывают сопротивление давлению крови, более эластичны и растяжимы. Благодаря этим качествам ритмичный ток крови становится непрерывным. Крупные артерии разделяются на средние и мелкие (артериолы). По мере отдаления от сердца в артериях уменьшается количество эластических элементов и повышается число мышечных, возрастает способность к изменению просвета. Стенка артериол имеет мышечный слой, иннервируемый сосудосуживающими и сосудорасширяющими нервами. Вследствие этого тонус артериол может контролироваться нервными центрами. Поэтому артериолы являются главными регуляторами кровотока в органах.

Просвет вен несколько больше, чем у артерий. Средний слой относительно тонкий и содержит мало мышечных и эластических элементов, поэтому вены на разрезе спадаются. По всей длине вен расположены попарно клапаны, которые препятствуют обратному току крови. Давление крови в венах низкое, пульсация отсутствует. Движение крови по венам обусловлено тонусом скелетных мышц, пульсацией соседствующих с венами артерий, наличием клапанов. Вены являются депо венозной крови. В венозной системе находится около 2/3 всей крови организма.

В стенках сосудов находятся нервные волокна, связанные с рецепторами, которые воспринимают изменения состава крови и стенки сосуда. Сосуды снабжены нервами, по которым поступают импульсы, возникшие в продолговатом мозге, в особом центре — сосудодвигательном. Различают сосудосуживающие нервы (уменьшают просвет сосуда) и сосудорасширяющие (увеличивающие просвет сосуда). Расширение, либо сужение сосудов могут вызвать различные вещества, например гормоны, лекарства.

Закономерности расположения сосудов тела человека

Расположение сосудов тела человека соответствует определенным закономерностям: общему типу строения организма человека, наличию осевого скелета, симметрии тела, наличию парных конечностей, ассиметрии большинства внутренних органов. Обычно артерии направляются к органам кратчайшим путем и подходят к ним с внутренней их стороны. На конечностях артерии идут по сгибательной поверхности, образуя вокруг суставов артериальные сети. На костной основе скелета артерии идут параллельно костям, например, межреберные артерии проходят рядом с ребрами, аорта — с позвоночником.

Основные сосуды тела человека

Самый большой непарный сосуд тела человека — аорта. Она делиться на восходящую часть, дугу аорты и нисходящую часть, которая делиться на грудную и брюшную части. Восходящая часть выходит их левого желудочка сердца. От нее отходят правая и левая венечные артерии, которые снабжают кровью сердце. От дуги аорты отходят — плечеголовной ствол (делиться на правую общую сонную и правую подключичную артерии), левая общая сонная артерия и левая подключичная артерии, которые обеспечивают кровью шею, голову, верхнюю часть туловища и верхние конечности. Подключичная артерия дает начало подмышечной артерии, продолжением которой является плечевая артерия. В локтевой ямке она делится на лучевую и локтевую артерии. Локтевая переходит на ладонь, соединяется с ветвью лучевой артерии, образуя ладонную дугу. От грудной части аорты отходят внутренностные (кровоснабжают легкие, трахею, бронхи, пищевод. ) и пристеночные ветви (кровоснабжают диафрагму, межреберные мышцы . ). Брюшная часть аорты делится на ветви, кровоснабжающие внутренние органы брюшной полости: желудок, печень, почки, поджелудочную железу, селезенку, кишечник. ). На уровне 4 поясничного позвонка брюшная часть аорты делиться на правую и левую общие подвздошные артерии, которые делятся на внутреннюю и наружную подвздошные артерии. Наружная подвздошная артерия — основная артерия, несущая кровь ко всей нижней конечности. Продолжением наружной подвздошной артерии является бедренная артерия, самая крупная ветвь которой — глубокая артерия бедра. Продолжением бедренной артерии является подколенная артерия, которая делится на заднюю и переднюю большеберцовые артерии. От задней отходят малоберповая и подошвенные артерии, от передней — большеберцовые возвратные артерии и лодыжковые артерии. Тыльная артерия стопы является продолжением передней большеберцовой артерии. Аорта с отходящими от нее артериями относится к кровеносным сосудам большого круга кровообращения. К артериям малого круга кровообращения относятся легочной ствол, правая и левая легочные артерии.

Вены делятся на поверхностные и глубокие. Самыми крупными венами являются верхняя и нижняя полые вены, воротная вена. На конечностях глубокие вены попарно сопровождают одноименные артерии. Название глубоких вен аналогично названию артерий, к которым они прилегают (плечевая артерия — плечевая вена т.д.). Вены малого круга кровообращения представлены двумя правыми и двумя левыми легочными артериями.

Сердце — главный орган кровообращения. Функция сердца. Сокращаясь, сердце нагнетает кровь в сосуды, обеспечивает ее движение и возвращение к самому сердцу.Сердце — полый, мышечный орган, конусовидной формы, массой около 300 г., расположенный в грудной полости. Приблизительно 2/3 сердца находится в левой половине грудной клетки и 1/3 — в правой. В норме длина сердца составляет 10-15 см, самый большой поперечный размер 9-11 см, переднезадний 6-8 см.

Сердце разделено сплошной перегородкой на две части — левую и правую. Каждая часть в свою очередь представлена двумя сообщающимися друг с другом отделами: верхний — предсердие и нижний — желудочек. Таким образом, сердце человека четырехкамерное — состоит из двух предсердий и двух желудочков. На границе между каждым предсердием и желудочком имеются клапаны в виде створок, которые сухожильными нитями прикреплены к стенкам сердца. Это створчатые клапаны. Между левым предсердием и левым желудочком клапан имеет две створки и называется двустворчатым, между правым предсердием и правым желудочком находится трехстворчатый клапан. Двустворчатый и трехстворчатый клапаны обеспечивают ток крови в одном направлении — из предсердий в желудочки.

У выхода аорты и легочного ствола из желудочков сердца находятся полулунные клапаны. Они имеют вид кармашков, расположенных на внутренних стенках кровеносных сосудов. Полулунные клапаны обеспечивают ток крови только в одном направлении — из желудочков в аорту и легочную артерию.

Стенка сердца состоит из трех слоев: внутреннего эндокарда, среднего -миокарда и наружного — эпикарда. Миокард является самой толстой и мощной в функциональном отношении частью стенки сердца, образован сердечной поперечнополосатой мышечной тканью. Стенки предсердий тоньше стенок желудочков, так как совершаемая ими работа сравнительно невелика. Левый желудочек образован более толстыми мышечными волокнами, чем правый, так как он противостоит более высокому давлению в большом круге кровообращения и должен совершать большую работу.

Сердце покрыто плотной фиброзной оболочкой — перикардом, образующим серозную полость, заполненную небольшим количеством жидкости, что предотвращает трение при его сокращении.

Не нашли то, что искали? Воспользуйтесь поиском:

источник