Меню

Влияние физических нагрузок на мышцы человека

Воздействие физических тренировок на мышечную систему человека.

Здоровье — это первая и важнейшая потребность человека, определяющая способность его к труду и обеспечивающая гармоническое развитие личности. Оно является важнейшей предпосылкой к познанию окружающего мира, к самоутверждению и счастью человека. Активная долгая жизнь — это важное слагаемое человеческого фактора.

* Физическое здоровье— это естественное состояние организма, обусловленное нормальным функционированием всех его органов и систем. Если хорошо работают все органы и системы, то и весь организм человека (система саморегулирующаяся) правильно функционирует и развивается.

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы.

Мышцы — активная часть двигательного аппарата

В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин — 42% веса тела, у женщин — 35%, у спортсменов — 45–52%.

По происхождению, строению и даже функции мышечная ткань неоднородна. Основным свойством мышечной ткани является способность к сокращению – напряжению составляющих ее элементов. Для обеспечения движения элементы мышечной ткани должны иметь вытянутую форму и фиксироваться на опорных образованиях (костях, хрящах, коже, волокнистой соединительной ткани и т.п.).

В различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статистические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или наконец, проводить тренировки с постепенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. Эксперименты показали, что нагрузки преимущественно статистического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пунктами увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4—5 раз больше, чем в мышцах выполняющих преимущественно статистическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы дряблыми, уменьшаются в объеме, капилляры их суживаются, в результате чего мышечные волокна истощаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. Под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение числа мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два—три и более тонких, вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно—два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную мышечную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. Установлено, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту.

Гладкая мышечная ткань – участвует в образовании стенки сосудов, внутренних органов радужной оболочки глаза.

Попречнополосатая сердечная мышечная ткань – может быть двух видов: одна обеспечивает сокращение сердца, вторая — проведение нервных импульсов внутри сердца.

Поперечнополосатая скелетная мышечная ткань – характерна для всех мышц скелета, диафрагмы, языка, глотки, начального отдела пищевода, мышц приводящих в движение глазное яблоко, и др. Основной структурной функциональной единицей поперечнополосатой мышечной ткани является мышечное волокно. Длина мышечных волокон колеблется от нескольких миллиметров до 10 и более сантиметров. С поверхности мышечное волокно покрыто оболочкой (сарколеммой).

Сокращение поперечнополосатых мышц происходит быстро, вместе с тем они быстро, рано утомляются. При динамическом характере работы, когда периоды сокращения чередуются с периодами расслабления, длительность сокращения невелика, капилляры не сдавливаются, питание волокна не нарушается, поэтому и утомление мышц наступает медленнее. При статистической работе — утомление наступает быстро.

Под влиянием нагрузки (двигательной деятельности) мышечные волокна утолщаются, увеличивается количество ядер. Имеются наблюдения, указывающие на то, что при этом может увеличиваться и число волокон.

Наряду с прочими позитивными изменениями мышечной системы, положительное влияние тренировки оказывают и на другие системы организма человека:

УЛУЧШАЕТСЯ РАБОТА СЕРДЦА.
Тренированный человек становится более выносливым, он может производить более ин­тенсивные движения и совершать тяжелую мышечную работу в течение длительного време­ни. Это в значительной степени зависит от того, что его органы кровообращения, дыхания и вы­деления лучше работают. Значительно увели­чивается их способность резко усиливать свою работу и приспосабливать ее к тем условиям, которые создаются в организме при повышенной физической нагрузке.
Усиленно работающие мышцы нуждаются в большем количестве кислорода и питательных веществ, а также в более быстром удалении про­дуктов обмена веществ. И то, и другое дости­гается благодаря тому, что в мышцы притекает больше крови и скорость тока крови в крове­носных сосудах увеличивается. Кроме того, кровь в легких больше насыщается кислородом. Все это возможно только потому, что значитель­но усиливается работа сердца и легких.
Когда мы находимся в покое, сердце выбра­сывает в аорту около 5 л крови в течение ми­нуты. При интенсивном физическом напряже­нии, например во время бега, при преодолении полосы препятствий и т. п., пульс учащается с 60—70 до 120—200 ударов в минуту, количе­ство выбрасываемой сердцем за 1 минуту крови увеличивается до 10—20 и даже до 40 л. Дав­ление крови в артериях возрастает со 120 до 200 мм ртутного столба.
У тренированных людей сердце легче при­спосабливается к новым условиям работы, а после окончания физических упражнений бы­стрее возвращается к нормальной деятельности. Число сокращений тренированного сердца меньше, а следовательно пульс реже, но зато при каждом сокращении сердце выбрасывает в артерии больше крови.
При более редких сокращениях сердца созда­ются более благоприятные условия для отдыха сердечной мышцы. Работа сердца и кровенос­ных сосудов в результате тренировки становит­ся экономичнее и лучше регулируется нервной системой.

УЛУЧШАЕТСЯ СОСТАВ КРОВИ И УВЕЛИЧИВАЮТСЯ ЗАЩИТНЫЕ СИЛЫ ОРГАНИЗМА
У тренированных людей количество эри­троцитов (красные кровяные тельца) увеличи­вается с 4,5—5 млн. в 1 мм 3 крови до 6 млн. Эритроциты — переносчики кислорода, поэто­му при увеличении их количества кровь может получить больше кислорода в легких и большее количество его доставить тканям, главным образом мышцам.
У тренированных людей увеличивается и количество лимфоцитов — белых кровяных те­лец. Лимфоциты вырабатывают вещества, ко­торые нейтрализуют различные яды, поступающие в организм или образующиеся в орга­низме. Увеличение количества лимфоцитов — одно из доказательств того, что в результате физических упражнений увеличиваются за­щитные силы организма, повышается устой­чивость организма против инфекции. Лю­ди, систематически занимающиеся физическими упражнениями и спортом, реже заболе­вают, а если заболевают, то в большинстве слу­чаев легче переносят инфекционные болезни. У тренированных людей становится более устойчивым содержание сахара в крови. Изве­стно, что при длительной и тяжелой работе мышц количество сахара в крови уменьшается. У тренированных людей это уменьшение не бывает таким резким, как у нетренированных. У людей, которые не привыкли к физиче­скому труду, при усиленной мышечной работе иногда нарушается выделение мочи. У тре­нированных работа почек лучше приспосаб­ливается к изменившимся условиям, и обра­зующиеся при усиленной физической нагрузке в большем количестве продукты обмена веществ своевременно удаляются из организма.
Таким образом, мы видим, что физическая культура и спорт благоприятно влияют не только на мускулатуру, но и на другие органы, улучшая и совершенствуя их работу.
Чтобы быть здоровым, крепким, выносли­вым и разносторонне развитым человеком, нужно постоянно и систематически заниматься различными видами физических упражнений и спорта. О некоторых из них, наиболее рас­пространенных и наиболее доступных каждому, мы здесь коротко расскажем.

Советуем прочитать:  Чем лечить болит мышца ягодицы

ГЛУБЖЕ СТАНОВИТСЯ ДЫХАНИЕ
В покое человек производит около 16 дыха­тельных движений в минуту. При каждом вдохе в легкие поступает около 500 см 3 воздуха.
При физической нагрузке в связи с увели­чением потребления кислорода мышцами ды­хание становится более частым и более глубо­ким. Объем легочной вентиляции, т, е. коли­чество воздуха, проходящего через легкие за одну минуту, резко увеличивается — с 8 л в покое до 100—140 л при быстром беге, пла­вании, ходьбе на лыжах. А чем больше воз­духа проходит через легкие, тем больше кис­лорода получает организм.
В состоянии покоя человек поглощает около 0,2 л кислорода в минуту. При мышечной ра­боте количество поглощаемого кислорода уве­личивается, но в определенных пределах. Наи­большая величина поглощения кислорода, так называемый кислородный потолок, у нетре­нированных не так велика, она равняется 2—3,5 л, а у хорошо тренированных людей организм может получать через легкие 5—5,5 л кислорода в минуту. Поэтому у тренирован­ных людей при физической работе не так быстро образуется «кислородный долг» (так называется разница между потребностью в кислороде и фактическим его потреблением) и они лучше мобилизуют приспособительные возможности дыхания и кровообращения. Это наглядно видно, например, при измерении спирометром жизненной емкости легких.

источник

Влияние физических упражнений на мышцы

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы. Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества.

Под влиянием усиленной мышечной деятельности происходит рефлекторное расширение кровеносных сосудов, улучшается питание работающего органа, прежде всего мышц, а затем и близлежащих органов, в частности кости со всеми ее компонентами .

Под влиянием занятий спортом изменяется внешняя форма костей. Они становятся массивнее и толще за счет увеличения костной массы. Все выступы, гребни, шероховатости выражены резче. Эти изменения зависят от вида спорта. Так, у тяжелоатлетов кости массивнее, чем у пловцов, особенно в верхнем отделе скелета и верхних конечностях.

Переломы у спортсменов срастаются быстрее. Суставной хрящ, покрывающий суставные поверхности костей, может утолщаться, что усиливает его амортизационные свойства и уменьшает давление на кость.

Еще в начале века выдающийся физиолог И. М. Сеченов установил, что во время труда и после него быстрее устраняет утомление не полный покой, а смена деятельности – активный отдых, т.е. физкультура. В 60-е годы киевский профессор И. В. Муравов установил “эффект погашения” утомления при выполнении движений ненагруженными мышцами. Оказалось, что это связано с возбуждением центров, бездействовавших во время работы, и более глубоким торможением утомленных центров. Отсюда нормализация функций нервной системы, кровообращения, дыхания, органов чувств. Получалось, что упражнение – универсальный стимулятор и восстановитель физической и умственной работоспособности. Опираясь на это, кандидат биологических наук В. М. Баранов систематизировал восстановительный эффект упражнений и разделил его на три группы.

К первой группе относятся упражнения, способствующие повышению возбудимости нервной системы: динамические упражнения (маховые движения конечностями с большой амплитудой, интенсивные потягивания, наклоны в стороны, вперед и назад, приседания, выпады, прыжки, ходьба, бег и др.); значительные сокращения мышц без внешнего движения (изометрические упражнения с напряжением отдельных групп мышц, например, некоторые йоговские позы-асаны и др.); тонизирующие дыхательные упражнения с задержкой дыхания на вдохе и др.

Ко второй группе относятся упражнения, понижающие возбудимость ЦНС при нервном и эмоциональном перенапряжении и возвращающие ее к оптимальному тонусу: произвольные мышечные расслабления (расслабления отдельных групп мышц, активное расслабление мышц при аутогенной тренировке, медитации и др.); успокаивающие дыхательные упражнения (спокойное ритмическое дыхание, дыхание с задержкой на выдохе и др.); динамические упражнения, выполняемые резко с большим мышечным напряжением, дающие двигательную разрядку и активное расслабление мышц рук и туловища за счет быстрого падения их под действием силы тяжести (потряхивание руками и др.).

В третью группу входят упражнения, нормализующие мозговое и периферическое кровообращение: интенсивные потягивания с глубоким дыханием, движения головой (повороты, наклоны, круговые движения), движения руками (вверх, вперед, назад, поочередные и одновременные круговые движения в плечевых суставах); наклоны туловища вперед и назад; движения нижними конечностями в области тазобедренного сустава (движения ногами сидя, приседания, подъемы на носках); чередование напряжений и расслаблении отдельных мышечных групп (рук, спины, живота, бедер); изменение позы, сидя с перераспределением массы тела на другие мышечные группы; прыжки, ходьба, бег, дыхательные упражнения (с задержкой дыхания на вдохе и выдохе) и др.

Комплексы упражнений, выполняемых с целью повышения работоспособности на производстве, составляют производственную гимнастику. В свою очередь последняя разделяется на зарядку, или вводную гимнастику, физкультурную паузу, физкультурные минутки, микропаузы и оздоровительно-профилактическую гимнастику.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Изменения мышц под влиянием физической нагрузки

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на всё системы организма, в том числе и на мышцы, изменяя их строение и функцию. Однако в различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объёму; в ней могут преобладать статические или динамические элементы; она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, изменяет характер, проявление силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться, и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать.

Экспериментально было установлено, что под влиянием нагрузки преимущественно статического характера значительно увеличиваются объём и вес мышц, а также поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани между мышечными пучками увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань благодаря своим физическим качествам значительно противостоит растягиванию, уменьшая, мышечное напряжение. Увеличивается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объём мышц также увеличиваются, но в меньшей степени. Происходят удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше. Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней; количество капилляров увеличивается, ход их остается более прямолинейным. Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4—5 раз больше, чем в мышцах, выполняющих преимущественно статическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы становятся дряблыми, уменьшаются в объёме, капилляры их суживаются (некоторые даже испытывают обратное развитие), в результате чего мышечные волокна истончаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объёме, в них улучшается кровоснабжение, открываются так называемые резервные капилляры. Систематическая тренировка вызывает рабочую гипертрофию мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии), которое происходит тремя путями: посредством расщепления гипертрофированных волокон на 2—3 и более, за счёт вырастания новых мышечных волокон из мышечных почек, а также благодаря формированию мышечных волокон из клеток-сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон пред¬шествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются 1—2 дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную моторную иннервацию. Кровоснабжение новых волокон осуществляется вновь образующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходят распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. Гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает.

Широкое применение метода динамометрии позволило установить у отдельных групп мышц у спортсменов разной специализации и составить как бы топографическую карту. Так, в показателях силы мышц верхних конечностей (сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют хоккеисты и гандболисты по сравнению с лыжниками-гонщиками и велосипедистами. В силе мышц-сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. В силе мышц-разгибателей плеча лучший показатель у хоккеистов (73 кг), несколько хуже у гандболистов (69 кг), лыжников (60 кг) и велосипедистов (57 кг). У не занимающихся спортом этот показатель составляет всего 48 кг.

Показатели силы мышц нижних конечностей также различны у занимающихся разными видами спорта. Величина силы разгибателей голени больше у гандболистов (77 кг) и хоккеистов (71 кг), меньше у лыжников-гонщиков (64 кг), ещё меньше у велосипедистов (63 кг). В силе мышц-разгибателей бедра большое преимущество у хоккеистов (177 кг), тогда как у гандболистов, лыжников и велосипедистов существенных различий в этом показателе нет (139—142 кг).

Особенно интересны различия в силе мышц-сгибателей стопы, способствующих отталкиванию, и разгибателей туловища, способствуй ющих удержанию позы. У хоккеистов сила мышц-сгибателей стопы равна 187 кг, у велосипедистов — 176 кг, у гандболистов — 146 кг, а сила мышц-разгибателей туловища у гандболистов равна 184 кг, у хоккеистов — 177 кг, у велосипедистов — 149 кг.

Советуем прочитать:  Упражнения для ослабленных мышц спины

Ярко выраженными особенностями развития силы мышц обладают боксёры. В момент нанесения удара в боксе большая нагрузка падает на мышцы-сгибатели кисти и пальцев, активное напряжение которых обеспечивает жёсткость звена. Во время боя значительную нагрузку в области туловища несут мышцы-разгибатели позвоночного столба, при активной работе которых осуществляется нанесение различных ударов. В области нижних конечностей наиболее сильного развития у боксеров достигают сгибатели и разгибатели бедра, разгибатели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы-разгибатели предплечья и сгибатели плеча, сгибатели голени и разгибатели стопы. При переходе от первой весовой категории к шестой увеличение силы наиболее «сильных» групп мышц происходит в большей степени, чем увеличение силы относительно «слабых» мышц, меньше участвующих в движениях боксёра.

Все эти особенности связаны с неодинаковыми биомеханическими условиями работы двигательного аппарата и неодинаковыми требованиями, предъявляемыми к нему в различных видах спорта.

источник

Изменение мышц под влияние физической нагрузки

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы, изменяя их строение и функцию. Однако в различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену реко­мендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движе­ний (гиподинамию), или, наконец, проводить тренировки с посте­пенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в про­цессе тренировки. В нашей стране этот метод применяют мало, влияние нагрузки на мышцы изучают косвенным путем на живот­ных, создавая экспериментальную модель. Хотя закономерности, установленные на животных, полностью на человека переносить нельзя, этим путем все же можно получить определенное представ­ление о тех процессах, которые совершаются в мышцах под влия­нием физических нагрузок.

Эксперименты на животных показали, что нагрузки преимущест­венно статического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожиль­ная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соедини­тельной ткани в мышцах между мышечными пучками увеличивает­ся, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается тро­фический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно раз­вивается капиллярная сеть, она становится узкопетлистой, с неоди­наковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Проис­ходит удлинение мышечной части и укорочение сухожильной. Мы­шечные волокна располагаются более параллельно, но типу вере­тенообразных. Количество миофибрилл увеличивается, а саркоплаз­мы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4-5 раз больше, чем в мышцах, выполняющих преимущественно статическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы становятся дряблыми, умень­шаются в объеме, капилляры их суживаются (некоторые даже испы­тывают обратное развитие), в результате чего мышечные волокна истончаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мыши.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилля­ры. По наблюдениям П.3. Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая явля­ется результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышеч­ных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение количества мышечных волокон происходит тремя путя­ми: посредством расщепления гипертрофированных волокон на два-три и более тонких вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшест­вует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно-два дополнитель­ных моторных нервных окончания. Благодаря этому после расщеп­ления каждое новое мышечное волокно имеет собственную мотор­ную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели про­дольного деления. При явлениях хронического переутомления одно­временно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. П.3. Гудзь установил, что гиподинамия дей­ствует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографи­ческую карту.

Так, в показателях силы мышц верхних конечностей (мышц-сги­бателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и Ручном мяче, по сравнению с лыжниками-гонщиками и велосипеди­стами. В силе мышц-сгибателей плеча заметно превосходство лыж­ников над гандболистами, хоккеистами и велосипедистами. Больших Различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмеча­йся в силе мышц-разгибателей плеча, причем лучший показатель. У хоккеистов (73 кг), несколько хуже у гандболистов (69 кг), лыж­ников (60 кг) и велосипедистов (57 кг). У не занимающихся спор­том этот показатель составляет всего 48 кг.

Показатели силы мышц нижних конечностей также различны у занимающихся разными видами спорта. Величина силы разгибате­лей голени больше у гандболистов (77 кг) и хоккеистов (71 кг), меньше у лыжников-гонщиков (64 кг), еще меньше у велосипедис­тов (63 кг) В силе мышц-разгибателей бедра большое преимущест­во у хоккеистов (177 кг), тогда как у гандболистов, лыжников и ве­лосипедистов существенных различий в силе этой группы мышц нет (139-142кг).

Особенно интересны различия в силе мышц-сгибателей стопы и разгибателей туловища, способствующих в первом случае отталки­ванию, а во втором – удержанию позы. У хоккеистов показатели си­лы мышц-сгибателей стопы составляют 187 кг, у велосипедистов – 176 кг, у гандболистов – 146 кг. Сила мышц-разгибателей тулови­ща у гандболистов равна 181 кг, у хоккеистов – 177 кг, а у велоси­педистов – 149 кг.

В момент нанесения удара в боксе особая нагрузка падает на мышцы сгибатели кисти и пальцев, активное напряжение которых обеспечивает жесткость звена. Во время боя большую нагрузку в области туловища несут мышцы разгибатели позвоночного столба, при активном участии которых осуществляется нанесение различ­ных ударов. В области нижних конечностей наиболее сильного раз­вития у боксеров достигают сгибатели и разгибатели бедра, разги­батели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы разгибатели предплечья и сгибатели плеча, сгиба­тели голени и разгибатели стопы. При этом при переходе от первой весовой группы к шестой увеличение силы наиболее сильных групп мышц происходит в большей степени, чем увеличение относительно «слабых», менее участвующих в движениях боксера, мышц.

Все эти особенности связаны с неодинаковыми биомеханически­ми условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы «ведущих» групп мышц.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Влияние физических упражнений на мышцы и скелет

Мышечная ткань принимает участие во всех движениях, совершаемых человеком. Она способствуют продвижению крови по сосудам, пищи – по пищеварительному тракту, продуктов обмена – по мочевыводящим путям, секрета желез – по протокам и т.д.

В мышечной ткани имеются сократительные элементы клетки ( миофибриллы ), трофические ( ядро и цитоплазма со всеми органоидами ) и опорные ( оболочка ) Различают два вида мышечной ткани: гладкую и поперечнополосатую, в последней, в свою очередь, выделяют скелетную и сердечную мышечную ткань.

Гладкая мышечная ткань – участвует в образовании стенки сосудов, внутренних органов радужной оболочки глаза.

Попречнополосатая сердечная мышечная ткань – может быть двух видов: одна обеспечивает сокращение сердца, вторая — проведение нервных импульсов внутри сердца.

Поперечнополосатая скелетная мышечная ткань – характерна для всех мышц скелета, диафрагмы, языка, глотки, начального отдела пищевода, мышц приводящих в движение глазное яблоко, и др. Основной структурной функциональной единицей поперечнополосатой мышечной ткани является мышечное волокно. Длина мышечных волокон колеблется от нескольких миллиметров до 10 и более сантиметров. С поверхности мышечное волокно покрыто оболочкой (сарколеммой).

Сокращение поперечнополосатых мышц происходит быстро, вместе с тем они быстро, рано утомляются. При динамическом характере работы, когда периоды сокращения чередуются с периодами расслабления, длительность сокращения невелика, капилляры не сдавливаются, питание волокна не нарушается, поэтому и утомление мышц наступает медленнее. При статистической работе — утомление наступает быстро.

Под влиянием нагрузки (двигательной деятельности) мышечные волокна утолщаются, увеличивается количество ядер. Имеются наблюдения, указывающие на то, что при этом может увеличиваться и число волокон.

Советуем прочитать:  Слабость мышц одной половины лица

ИЗМЕНЕНИЕ МЫШЦ ПОД ВЛИЯНИЕМ ФИЗИЧЕСКОЙ НАГРУЗКИ

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы.

Мышцы — активная часть двигательного аппарата

В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин — 42% веса тела, у женщин — 35%, у спортсменов — 45–52%.

По происхождению, строению и даже функции мышечная ткань неоднородна. Основным свойством мышечной ткани является способность к сокращению – напряжению составляющих ее элементов. Для обеспечения движения элементы мышечной ткани должны иметь вытянутую форму и фиксироваться на опорных образованиях (костях, хрящах, коже, волокнистой соединительной ткани и т.п.).

В различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статистические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или наконец, проводить тренировки с постепенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. Эксперименты показали, что нагрузки преимущественно статистического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пунктами увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4—5 раз больше, чем в мышцах выполняющих преимущественно статистическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы дряблыми, уменьшаются в объеме, капилляры их суживаются, в результате чего мышечные волокна истощаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. По наблюдениям П.З. Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение числа мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два—три и более тонких, вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно—два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную мышечную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. Установлено, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту.

Так, в показателях силы мышц верхних конечностей (мышц—сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и ручном мяче, по сравнению с лыжниками—гонщиками, и велосипедистами. В силе мышц—сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмечаются в силе мышц—разгибателей, причем лучший показатель у хоккеистов (73кг), несколько хуже у гандболистов (69кг), лыжников (60кг) и велосипедистов (57кг). У не занимающихся спортом этот показатель составляет всего 48кг.

Показатели силы мышц нижних конечностей также различны у занимающихся различными видами спорта. Величина силы разгибателей голени больше у гандболистов (77кг) и хоккеистов (71кг), меньше у лыжников—гонщиков (64кг), еще меньше у велосипедистов (63кг). в силе мышц—разгибателей бедра большое преимущество у хоккеистов (177кг), тогда как у гандболистов, лыжников и велосипедистов существенных различий в силе этой группы мышц нет (139 — 142кг).

Особенно интересны различия в силе мышц—сгибателей стопы и разгибателей туловища, способствующих в первом случае отталкиванию, а во втором — удержанию позы. У хоккеистов показатели силы мышц—сгибателей стопы составляют 187кг, у велосипедистов — 176кг, у гандболистов — 146кг. Сила мышц—разгибателей туловища у гандболистов равна 184кг, у хоккеистов — 177кг, а у велосипедистов — 149кг.

В момент нанесения удара в боксе особая нагрузка падает на мышцы сгибатели кисти и пальцев, активное напряжение которых обеспечивает жесткость звена. Во время боя большую нагрузку в области туловища несут мышцы разгибатели позвоночного столба, при активном участии осуществляется нанесение различных видов ударов. В области нижних конечностей наиболее сильного развития у боксеров достигают сгибатели и разгибатели бедра, разгибатели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы разгибатели предплечья и сгибатели плеч, сгибатели голени и разгибатели стопы. При этом при переходе от первой весовой группы к шестой увеличение силы наиболее сильных групп мышц происходит в большей степени, чем увеличение относительно “слабых”, менее участвующих в движениях боксера, мышц.

Все эти особенности связаны с неодинаковым биохимическими условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы “ведущих” групп мышц.

ВЛИЯНИЕ ЗАНЯТИЙ СПОРТОМ НА СКЕЛЕТ

Под влиянием усиленной мышечной деятельности в скелете спортсмена происходят существенные изменения. На состояние скелета оказывают влияние и другие факторы, связанные с занятием спортом: характерное положение тела спортсмена (у велосипедистов, конькобежцев, боксеров, гребцов и т.д.), сила давления на скелет (у тяжелоатлетов), сила растяжения при висах, при скручивании тела (у акробатов, гимнастов, фигуристов и др.) при правильном дозированных нагрузках эти изменения обычно бывают благоприятными. В противном случае возможны патологические изменения скелета.

Наиболее простой механизм возникновения у спортсменов изменения скелета можно представить следующим образом. Под влиянием усиленной мышечной деятельности происходит рефлекторное расширение кровеносных сосудов, улучшается питание работающего органа, прежде всего мышц, а затем и близлежащих органов, в частности кости со всеми ее компонентами (надкостница, компактный слой, губчатое вещество, костномозговая полость, хрящи, покрывающие суставные поверхности костей и др.).

Все изменения в скелете появляются постепенно. Через год занятий спортом можно наблюдать отчетливо выраженные морфологические изменения костей. В дальнейшем эти изменения стабилизируются, но перестройка скелета происходит на протяжении всего тренировочного процесса. При прекращении активной спортивной деятельности приспособительные изменения костей остаются довольно продолжительное время.

Изменения, происходящие в скелете под влиянием занятий спортом, касаются и химического состава костей, и внутреннего их строения, и процессов роста и окостенения.

Кости, несущие большую нагрузку, богаче солями кальция, чем кости, несущие меньшую нагрузку. На рентгенограммах кости спортсменов имеют более четкий рисунок, чем кости не спортсменов, что объясняется большей оссификацией костной ткани, лучшим насыщением ее минеральными солями.

Под влиянием занятий спортом изменяется внешняя форма костей. Они становятся массивнее и толще за счет увеличения костной массы. Все выступы, гребни, шероховатости выражены резче. Эти изменения зависят от вида спорта. Так, у тяжелоатлетов кости массивнее, чем у пловцов, особенно в верхнем отделе скелета и верхних конечностях.

Изменение внутреннего состава кости под влиянием занятий спортом выражаются, в частности, в утолщении ее компактного вещества. Причем утолщение обычно больше в тех костях, на которые падает нагрузка. Но изменения компактного вещества также может происходить и без его утолщения, без изменения диаметра кости. В связи с утолщение компактного вещества костномозговая полость уменьшается. При больших статистических нагрузках она уменьшается почти до полного зарастания

Губчатое вещество кости также претерпевает определенные изменения. Под влиянием усиленной нагрузки на кость перекладины губчатого вещества становятся толще, крупнее, ячейки между ними больше (в старшем возрасте ячейки тоже становятся больше, но перекладины тоньше).

Переломы у спортсменов срастаются быстрее. Суставной хрящ, покрывающий суставные поверхности костей, может утолщаться, что усиливает его амортизационные свойства и уменьшает

источник