Функции и свойств скелетные мышцы

Лекция 4. Физиология скелетных мышц Функции и свойства скелетных мышц

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3)перемещают отдельные части тела относительно друг друга;

4)являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими свойствами:

1)возбудимостью —способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. Величина потенциала покоя мышечных волокон составляет примерно — 90 мВ, амплитуда потенциала действия — 120—130 мВ. Длительность потенциала действия 1—3 мс, уровень критической деполяризации — 50 мВ.

2)проводимостью —способностью проводить потенциал действия по мембране вдоль и в глубь мышечного волокна;

3)сократимостью —способностью укорачиваться или развивать напряжение при возбуждении;

4)эластичностью —способностью развивать напряжение при растягивании мышцы.

Скелетные мышцы – это сложное образование, структурной единицей которого являются мышечное волокно. Диаметр мышечных волокон составляет 10-100 мкм. Их длина различна и находится в пределах от 5до 400 мм. Отдельные мышечные волокна могут быть почти такой же длины, как и мышца. Но чаще всего они короче, так как имеют косое расположение, например, в перистых мышцах.

Мышечные волокна объединены в пучки, обвитые соединительной тканью. Совокупность мышечных волокон иннервируемых одним -мотонейроном называется нейромоторная или двигательная единица. Она является функциональной единицей скелетной мышцы.

Число мышечных волокон, входящих в состав двигательной единицы, различно и зависит от функции, которую выполняет мышца в целом.

В мышцах, обеспечивающих наиболее точные и быстрые движения, двигательная единица состоит из нескольких мышечных волокон, в то время как в мышцах, участвующих в поддержании позы, двигательные единицы включают несколько сотен и даже тысяч мышечных волокон.

Так двигательная единица мышц глаза имеет менее 10 мышечных волокон, пальцев рук — 10-25 мышечных волокон, двуглавая мышца — около 750, камбаловидная — 2000.

Структурная организация мышечного волокна

Мышечное волокно — это многоядерная структура, окружена мембраной и содержит сократительный аппарат — миофибриллы.В саркоплазме клеток содержатсямитохондрии,система продольных трубочек —саркоплазматическая сеть(ретикулум) и система поперечных трубочек —Т-система.Функциональной сократительной единицей мышечной клетки является саркомер; из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками.

При изучении мышечных волокон в световой микроскоп была выявлена их поперечная исчерченность. Оказалось, что миофибрилла состоит из чередующихся темных — анизотропныхдисков (дисков А) и светлых —изотропных (дисковI).по центру изотропных дисков проходитZ— мембрана, которая объединяет все миофибриллы и упорядочивает расположение дисков — темных над темными, светлых над светлыми. В центре темного диска располагаетсяполоска просветления Н.

Электронно-микроскопическое строение миофибрилл

Более тонкое, электронно-микроскопическое исследование показало, что миофибрилла имеет два типа сократительных белков актин и миозин.

Актиновые филаменты — это тонкие и длинные нити белка закрученные в двойную спираль с шагом около 36,5 нм. Они проходят через поры Z- мембраны.

Между нитями актина в центре саркомера располагаются более толстые и короткие нити миозина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. Нити миозина в состоянии покоя удерживает М-линия, которая располагается в центре Н-полоски.

На боковых сторонах миозиновых нитей были обнаружены поперечные мостики. Они состоят из головки и шейки. Головка представляет собой шарнир и может поворачиваться вокруг своей оси за счет эластических свойств. Головка при связывании с актином приобретает выраженную АТФ-азную активность.

В продольных бороздках актиновых филаментов располагаются нитевидные молекулы белка тропомиозина.С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка —тропонина. Тропонин и тропомиозин являются регуляторными белками и играют важную роль в механизмах взаимодействия актина и миозина при сокращении.

источник

Скелетные мышцы

  • Физиология
  • История физиологии
  • Методы физиологии

Скелетные мышцы: строение, свойства и функции

У человека различают три вида мышц: поперечнополосатые скелетные мышцы; поперечнополосатая сердечная мышца; гладкие мышцы внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость — способность мышцы изменять длину под действием растягивающей силы.

Эластичность — способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

Сила мышц — способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый — в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Гладкие мышцы сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

источник

Функции и свойства скелетных мышц

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3)перемещают отдельные части тела относительно друг друга;

4)являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими свойствами:

1)возбудимостью —способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т. е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

2)проводимостью —способностью проводить потенциал действия по мембране вдоль и в глубь мышечного волокна по Т-трубочкам;

3)сократимостью —способностью укорачиваться или развивать напряжение при возбуждении;

4)эластичностью —способностью развивать напряжение при растягивании.

Структурная организация мышечного волокна

Мышечное волокно — это многоядерная структура, окружена мембраной и содержит сократительный аппарат — миофибриллы.В саркоплазме клеток содержатсямитохондрии,системы продольных трубочек —саркоплазматическая сеть(ретикулум) и система поперечных трубочек —Т-система.Функциональной сократительной единицей мышечной клетки является саркомер (рис. 17); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Они последовательно расположены в миофибрилле, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.

При изучении мышечных волокон в световой микроскоп выявило их поперечную исчерченность. Более тонкое, электронно-микроскопическое исследование показало, что поперечная исчерченность связана с особой организацией двух сократительных белков миофибрилл — актина(молекулярная масса 42 000) имиозина(молекулярная масса около 500000).

Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Их длина 1 мкм и диаметр 6—8 нм, одним концом прикреплены к Z-пластинке, количество актиновых нитей достигает около 2000.

Между нитями актина в центре саркомера располагаются толстые нити миозина длиной около 1,6 мкм. В световом микроскопе это выглядит как полоска темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В середине его видна более светлая полоска Н, в ней в состоянии покоя нет актиновых нитей. По обе стороны темного диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. Нити миозина в состоянии покоя удерживает М-линия, которая располагается в центре Н-полоски.

На боковых сторонах миозиновых нитей были обнаружены поперечные мостики (рис.18). Они состоят из головки и шейки. Головка представляет собой шарнир и может поворачиваться вокруг своей оси за счет эластических свойств. Головка при связывании с актином приобретает выраженную АТФ-азную активность.

На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 17).

В продольных бороздках актиновых филаментов располагаются нитевидные молекулы белка тропомиозина.С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка —тропонина (рис.18).Тропонин и тропомиозин являются регуляторными белками и играют важную роль в механизмах взаимодействия актина и миозина при сокращении.

источник

9. Строение, функции и свойства скелетных мышц. Классификация скелетных мышечных волокон. Строение, свойства и функции гладких мышц.

Скелетная мышца образована поперечнополосатой мышечной тканью, волокна которой скреплены при помощи соединительной ткани в отдельные пучки. Мышца прони­зана большим количеством кровеносных сосудов и нервов. Идущая по сосудам кровь приносит мышце питательные вещества и кислород, выносит из неё углекислоту и другие продукты её жизнедеятель­ности. По нервам проводится возбуждение как к мышце, так и от неё. На концах мышца переходит в сухожильную соединительную ткань, при помощи которой прикрепляется к костям. Структурно-функциональной сократительной единицей миофибриллы является сакромер — повторяющийся участок фибриллы, ограниченный двумя пластинками Z.

Свойства скелетных мышц: растяжимость, эластичность, пластичность, сократимость.

Функции скелетных мышц: 1 — передвижение тела в пространстве, 2 — перемещение частей тела относительно друг друга, 3 — поддержание позы, 4 — передвижение крови и лимфы, 5 – выработка тепла, 6 – участие в акте вдоха и выдоха, 7 – двигательная активность как важнейший антиэнтропийный и антистрессовый фактор, 8 – депонирование воды и солей, 9 – защита внутренних органов

Мышечные волокна делятся на 3 вида: скелетные, сердечные и гладкие. Скелетные волокна подразделяются на фазные (они генерируют ПД) и тонические (не способны генерировать полноценный потенциал действия распространяющегося типа). Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные (красные, окислительные). Скелетные мышцы имеют два типа волокон: интрафузальные (находятся внутри мышечного веретена – специализированного мышечного рецептора, располагающегося в толще скелетной мышцы; эти волокна необходимы для регуляции чувствительности рецептора; управляются гамма-мотонейронами) и экстрафузальные (все, принадлежащие данной мышце и не входящие в состав мышечного веретена).

Гладкие мышцы находятся в стенках внутренних органов и кровеносных сосудов. Регуляция их тонуса и сократительной активности осуществляется эфферентными волокнами симпатической и парасимпатической нервной системы, а также местными гуморальными и физическими воздействиями.

Сократительный аппарат гладких мышц, как и скелетных, состоит из толстых миозиновых и тонких актиновых нитей. Вследствие их нерегулярного распределения клетки гладких мышц не имеют характерной для скелетной и сердечной мышцы поперечной исчерченности. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм и толщину 2-10 мкм. Они отделены друг от друга узкими щелями (60-150 нм). Возбуждение электротонически распространяется по мышце от клетки к клетке через особые плотные контакты (нексусы) между плазматическими мембранами соседних клеток.

Гладкие мышцы делятся на тонические (не способны развивать быстрые сокращения) и фазно-тонические(обладающие автоматией – способные к спонтанной генерации фазных сокращений и не обладающие автоматией).

Свойства гладких мышц: электрическая активность, автоматия, пластичность, растяжимость, сократимость, самовозбудимость, способность к длительным сокращениям.

Функции: обеспечивают функцию полых органов, стенки которых они образуют, осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки; обеспечивают сфинктерную функцию – создают условия для хранения содержимого полого органа в этом органе – мочу в мочевом пузыре, плод в матке; в системе кровообращения и лимфообращения – изменяя просвет сосудов, адаптируют региональный кровоток к местным потребностям в кислороде, питательных веществах.

источник

Функции и свойства скелетных мышц

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3)перемещают отдельные части тела относительно друг друга;

4)являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими свойствами:

1)возбудимостью —способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т. е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

2)проводимостью —способностью проводить потенциал действия по мембране вдоль и в глубь мышечного волокна по Т-трубочкам;

3)сократимостью —способностью укорачиваться или развивать напряжение при возбуждении;

4)эластичностью —способностью развивать напряжение при растягивании.

Структурная организация мышечного волокна

Мышечное волокно — это многоядерная структура, окружена мембраной и содержит сократительный аппарат — миофибриллы.В саркоплазме клеток содержатсямитохондрии,системы продольных трубочек —саркоплазматическая сеть(ретикулум) и система поперечных трубочек —Т-система.Функциональной сократительной единицей мышечной клетки является саркомер (рис. 17); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Они последовательно расположены в миофибрилле, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.

При изучении мышечных волокон в световой микроскоп выявило их поперечную исчерченность. Более тонкое, электронно-микроскопическое исследование показало, что поперечная исчерченность связана с особой организацией двух сократительных белков миофибрилл — актина(молекулярная масса 42 000) имиозина(молекулярная масса около 500000).

Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Их длина 1 мкм и диаметр 6—8 нм, одним концом прикреплены к Z-пластинке, количество актиновых нитей достигает около 2000.

Между нитями актина в центре саркомера располагаются толстые нити миозина длиной около 1,6 мкм. В световом микроскопе это выглядит как полоска темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В середине его видна более светлая полоска Н, в ней в состоянии покоя нет актиновых нитей. По обе стороны темного диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. Нити миозина в состоянии покоя удерживает М-линия, которая располагается в центре Н-полоски.

На боковых сторонах миозиновых нитей были обнаружены поперечные мостики (рис.18). Они состоят из головки и шейки. Головка представляет собой шарнир и может поворачиваться вокруг своей оси за счет эластических свойств. Головка при связывании с актином приобретает выраженную АТФ-азную активность.

На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 17).

В продольных бороздках актиновых филаментов располагаются нитевидные молекулы белка тропомиозина.С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка —тропонина (рис.18).Тропонин и тропомиозин являются регуляторными белками и играют важную роль в механизмах взаимодействия актина и миозина при сокращении.

источник

Функции и свойства скелетных мышц

Автор: Пользователь скрыл имя, 20 Февраля 2012 в 18:32, реферат

Описание работы

Скелетная мускулатура является составной частью опорно-дви­гательного аппарата человека. При этом мышцы выполняют следу­ющие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

Работа содержит 1 файл

физИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ.doc

Функции и свойства скелетных мышц

Скелетная мускулатура является составной частью опорно-дви­гательного аппарата человека. При этом мышцы выполняют следу­ющие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

В настоящей главе мы рассмотрим функциональные свойства мышц, связанные с участием в работе опорно-двигательного аппарата. Скелетная мышца обладает следующими важнейшими свойствами:

1) возбудимостью — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто

используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т. е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбуди­мость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блоки­рующие передачу нервного импульса через нервно-мышечный си­напс;

2) проводимостью — способностью проводить потенциал дейст­вия вдоль и в глубь мышечного волокна по Т-системе;

3) сократимостью — способностью укорачиваться или разви­вать напряжение при возбуждении;

4) эластичностью — способностью развивать напряжение при растягивании.

Механизм мышечного сокращения

Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

Структурная организация мышечного волокна. Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных тру­бочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-мик­роскопические исследования показали, что поперечная исчерчен­ность обусловлена особой организацией сократительных белков миофибрилл — актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представ­лены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреп­лены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина. Тропонин и тропомиозин играют важ­ную роль в механизмах взаимодействия актина и миозина. В сере­дине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния — структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную органи­зацию миофиламента: каждая нить миозина окружена шестью ни­тями актина (рис. 2.20, Б).

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование микроэлектродной техники в сочетании с интер­ференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых. В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.

Механизм мышечного сокращения. В процессе сокращения мы­шечного волокна в нем происходят следующие преобразования:

А. Электрохимическое преобразование:

2. Распространение ПД по Т-системе.

3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.

Б. Хемомеханическое преобразование:

4. Взаимодействие ионов Са2+ с тропонином, освобождение ак­тивных центров на актиновых филаментах.

5. Взаимодействие миозиновой головки с актином, вращение го­ловки и развитие эластической тяги.

6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укоро­чение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мы­шечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократитель­ным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух со­седних саркомеров. Электрическая стимуляция места контакта при­водит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, при­водящих к повышению внутриклеточной концентрации Са2+ состав­ляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электриче­ского сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+ . Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью кор­релировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодейст­вие кальция с тропонином.

Следующим, пятым, этапом электромеханического сопря­жения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько ак­тивных центров, которые последовательно взаимодействуют с соот­ветствующими центрами на актиновом филаменте. Вращение голов­ки приводит к увеличению упругой эластической тяги шейки по­перечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок попе­речных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к сколь­жению тонких и толстых нитей относительно друг друга и умень­шению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей

Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровер­гли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Гидролиз АТФ в АТФазном центре головки миозина сопро­вождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается за­пасенной в ней энергией. В каждом цикле соединения и разъ­единения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоро­стью расщепления АТФ. Очевидно, что быстрые фазические во­локна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъедине­ние головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо по­нижение концентрации ионов Са2+. Экспериментально было доказа­но, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фос­фатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Неко­торое время после смерти мышцы остаются мягкими вследствие пре­кращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже критического уровня и возмож­ность разъединения головки миозина с актиновым филаментом исче­зает. Возникает явление трупного окоченения с выраженной ригидно­стью скелетных мышц.

Режимы мышечного сокращения

Сократительная способность скелетной мышцы харак­теризуется силой сокращения, которую развивает мышца (обычно оценивают общую силу, которую может развивать мышца, и абсолютную, т. е. силу, приходящуюся на 1 см2 поперечного сечения).длиной укорочения, степенью напряжения мышечного волокна, скоростью укорочения и раз­вития напряжения, скоростью расслабления. По­скольку эти параметры в большой степени определяются исходной длиной мышечных волокон и нагрузкой на мышцу, исследования сократительной способности мышцы производят в различных режи­мах.

Раздражение мышечного волокна одиночным пороговым или сверхпороговым стимулом приводит к возникновению одиночного со­кращения, которое состоит из нескольких периодов (рис. 2.23). Пер­вый — латентный период представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волок­на, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

Второй — период укорочения, или развития напря­жения. В случае свободного укорочения мышечного волокна говорят об изотоническом режиме сокращения, при котором напряжение практически не изменяется, а меняется только длина мышечного во­локна. Если мышечное волокно закреплено с двух сторон и не может свободно укорачиваться, то говорят об изометрическом режиме со­кращение Строго говоря, при данном режиме сокращения длина мы­шечного волокна не изменяется, в то время как размеры саркомеров меняются за счет скольжения нитей актина и миозина относительно друг друга. В этом случае возникающее напряжение передается на эластические элементы, расположенные внутри волокна. Эластиче­скими свойствами обладают поперечные мостики миозиновых нитей, актиновые нити, Z-пластинки, продольно расположенная саркоплазматическая сеть и сарколемма мышечного волокна.

В опытах на изолированной мышце выявляется растяжение со­единительнотканных элементов мышцы и сухожилий, которым пе­редается напряжение, развиваемое поперечными мостиками.

В организме человека в изолированном виде изотонического или изометрического сокращения не происходит. Как правило, развитие напряжения сопровождается укорочением длины мышцы — ауксотонический режим сокращение

Третий — период расслабления, когда уменьшается кон­центрация ионов Са2+ и отсоединяются головки миозина от актиновых филаментов.

Полагают, что для одиночного мышечного волокна напряжение, развиваемое любым саркомером, равно напряжению в любом другом саркомере. Поскольку саркомеры соединены последовательно, скорость, с которой происходит сокращение мышечного волокна, про­порциональна числу его саркомеров. Таким образом при одиночном сокращении скорость укорочения длинного мышечного волокна вы­ше, чем у более короткого. Величина усилия, развиваемого мышеч­ным волокном, пропорциональна числу миофибрилл в волокне. При мышечной тренировке число миофибрилл увеличивается, что явля­ется морфологическим субстратом увеличения силы сокращения мышц. Одновременно увеличивается и число митохондрии, повы­шающих выносливость мышечного волокна при физической на­грузке.

источник