Меню

Это регистрация электрических потенциалов сердечной мышцы

Это регистрация электрических потенциалов сердечной мышцы

По сути, сердце является электрическим органом. Электрические сигналы, генерируемые сердцем, не только вызывают мышечное сокращение (за счет регулирования потока ионов кальция через мембрану сердечных клеток), но и организуют последовательность мышечного сокращения в каждом сердечном цикле, оптимизируя таким образом насосную функцию сердца. Кроме того, что особенно соответствует теме данной книги, форма и продолжительность электрических сигналов сердца определяют сердечный ритм. Правильно функционирующая электрическая система жизненно важна для нормальной работы сердца.

Сердечные электрические импульсы генерируются в синоатриальном (СА) узле, находящемся в верхнем отделе правого предсердия около верхней полой вены. От СА-узла импульс радиально распространяется по обоим предсердиям. Когда импульс достигает атриовентрикулярной (АВ) борозды, он наталкивается на фиброзный «скелет» сердца, отделяющий предсердия от желудочков. Фиброзный скелет электрически инертен, и поэтому останавливает электрические импульсы. Единственным путем для прохождения импульса к желудочкам являются специализированные АВ-проводящие ткани — АВ-узел и система Гиса-Пуркинье.

Поскольку АВ-узел проводит электричество медленно, в продвижении электрического импульса, поступающего в него, происходит задержка, что отражается интервалом PQ на поверхностной электрокардиограмме (ЭКГ). Из АВ-узла электрический импульс попадает в пучок Гиса — самую проксимальную часть быстро проводящей системы Гиса—Пуркинье. Пучок Гиса проникает через фиброзный скелет сердца и проводит импульс на желудочковую сторону АВ-борозды.

По желудочкам электрический импульс следует по системе Гиса—Пуркинье, разделяющейся сначала на правую и левую ножки пучка Гиса, а затем на волокна Пуркинье. Волокна Пуркинье проводят импульс до самых отдаленных областей желудочкового миокарда. По этому пути импульс быстро распространяется по желудочкам.

Таким образом, электрическая система сердца организует последовательность сокращения миокарда в каждом сердечном цикле. Когда электрический импульс распространяется по предсердиям, они сокращаются. За счет задержки импульса в АВ-узле предсердия полностью опорожняются до того момента, когда он достигнет желудочков. Как только импульс покидает АВ-узел, он быстро распространяется в миокарде желудочков по волокнам Пуркинье, обеспечивая тем самым энергичное и упорядоченное их сокращение.

Электрограмма пучка Гиса (ЭПГ). Схема.
А — глубокий потенциал правого предсердия; А’- высокий потенциал правого предсердия (HRA);
Н — потенциал пучка Гиса; V- потенциал желудочка.

Сердечный потенциал действия

Электрический импульс в сердце фактически складывается из тысяч маленьких электрических токов, генерируемых тысячами отдельных сердечных клеток. Электрическая активность каждой клетки сердца описывается сердечным потенциалом действия. Потенциал действия — это сложное явление. К счастью, те немногие сведения, которые нам нужно иметь о потенциале действия, довольно просты для понимания.

Внутри каждой живой клетки имеется отрицательный электрический заряд. Разность напряжения между обеими сторонами клеточной мембраны (в норме от —80 до —90 мВ) называется трансмембранным потенциалом и является результатом аккумуляции отрицательно заряженных молекул внутри клетки. Величина трансмембранного потенциала постоянна в течение всей жизни у большинства клеток.

Однако некоторые клетки, в частности сердечные, являются возбудимыми. Когда возбудимые клетки определенным образом стимулируются, в клеточной мембране начинают в сложной последовательности открываться и закрываться множество крошечных каналов, что позволяет электрически заряженным частицам — ионам — перемещаться (также в сложной последовательности) через мембрану внутрь клетки и из нее. Движение электрического тока через клеточную мембрану имеет весьма стереотипную форму и приводит к определенной последовательности изменений трансмембранного потенциала. Если эти стереотипные изменения напряжения изобразить на графике в зависимости от времени, получится сердечный потенциал действия.

Хотя потенциал действия сердца разделяется на 5 классических фаз (несколько нелогично обозначенных цифрами от 0 до 4), для более легкого понимания лучше обсуждать потенциал действия в соответствии с тремя основными фазами: деполяризации, реполяризации и фазы покоя.

источник

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ КЛЕТОК МИОКАРДА

В естественных условиях клетки миокарда постоянно находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно гово­рить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентрационным градиентом К + .

Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по своей форме, амплитуде и длительности (рис. 117, А, Б). На рис. 117, В схематически показан потен­циал действия одиночной клетки миокарда желудочка. Для возникновения этого потен­циала потребовалось деполяризовать мембрану на 30 мВ. В потенциале действия разли­чают следующие фазы: 1) быструю начальную деполяризацию — фаза 0/1; 2) медлен­ную реполяризацию, так называемое плато — фаза 2; 3) быструю реполяризацию — фаза 3; 4) фазу покоя, или медленной диастолической деполяризации — фаза 4.

Фаза 0/1 в клетках миокарда предсердий, сердечных проводящих миоцитов (воло­кон Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза потенциала действия нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика потенциала действия происходит изменение знака мембранного потенциала (с —90 мВ на +30 мВ).

Деполяризация мембраны вызывает активацию медленных натрий-кальциевых ка­налов. Поток Са 2+ внутрь клетки по этим каналам приводит к развитию плато потен­циала действия (фаза 2). В период плато натриевые каналы инактивируются и,клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит актива­ция калиевых каналов. Выходящий из клетки поток К + обеспечивает быструю реполя­ризацию мембраны (фаза 3), во время которой кальциевые каналы закрываются, что ускоряет процесс реполяризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).

Рис. 117. Л. Различные типы потенциалов действия сердечных клеток, коррелированные с временным хо­дом электрокардиограммы.
С—А —синуснО’Предсердный (енноатриальный) узел; П ■ предсердие; А- В предсерлно-желудочковый

.В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал (в интервалах между следующими друг за другом потенциалами действия) поддержи­вается на более или менее постоянном уровне. Однако в клетках синусно-предсердного (синоатриального) узла, выполняющего роль «водителя ритма» сердца, наблюдается спонтанная диастолическая деполяризация (фаза 4), при достижении критического уровня которой (примерно — 50 мВ) возникает новый потенциал действия (рис. 117, В). На этом механизме основана авторитмическая активность указанных сердечных клеток. Необходимо отметить и другие важные их особенности: 1) малая крутизна подъема потенциала действия; 2) медленная реполяризация (фаза 2), плавно переходящая

в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня — 60 мВ (вместо — 90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток атриовентрикулярного узла, однако скорость спон­танной диастолической деполяризации у них значительно ниже, чем у клеток синоатри- ального узла, соответственно ритм их потенциальной автоматической активности меньше.

Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастоли­ческой деполяризации и медленной восходящей фазы потенциала действия клеток синоатриального узла ведущую роль играют кальциевые каналы (необходимо подчерк­нуть, что они проницаемы не только для ионов но и для ионов Na + ). Быстрые натриевые каналы не принимают участия в генерации потенциалов действия этих клеток.

Скорость развития медленной диастолической деполяризации регулируется веге­тативной нервной системой. При увеличении симпатических влияний медиатор норадре­налин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае увеличения парасимпатических влияний (по блуждающему нерву) медиатор ацетилхолин повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее. Поэтому происходит урежение ритма или полное прекращение автоматии.

Способность клеток миокарда в течение многих десятилетий жизни человека находится в состоянии непрерывной ритмической активности, обеспечивается эффектив­ной работой ионных насосов этих клеток. За период диастолы из клетки выводятся ионы Na + , а в клетку возвращаются ионы К + . Ионы Са 2+ , проникшие в цитоплазму, секвестрируются саркоплазматическим ретикулумом. Ухудшение кровоснабжения мио­карда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается и как следствие падает электрическая и механиче­ская активность миокардиальных клеток.

Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синоатриального узла, которая обеспечивается тесными контактами (нексусами) и электротоническим взаимодействием этих клеток. Возникнув в синоатриальном узле, возбуждение-распространяется по проводящей системе на сократительный (рабочий) миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение, т. к. любая клетка ее обладает автоматией. При этом наблюдается так называемый градиент автоматии, выражающийся в убываю­щей способности к автоматии различных участков проводящей системы по мере их удаления от синоатриального узла.

В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синоатриального узла. В случае поражения и выхода из строя этого узла водителем ритма может стать атриовентрикулярный узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если выйдет из строя этот узел, водителем ритма могут стать волокна пред- сер дно-желудочкового пучка (пучка Гиса). Частота сердечных сокращений тогда не превысит 30—40 ударов в минуту. В том случае, если-выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 ударов в минуту. Этого недостаточно для поддержания нормальной функции высших отделов мозга (для сохранения сознания), но в случае восстановления нормальной функции сердца мозг возвращается к полноценной деятельности.

Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества тесных межклеточных контактов — нексусов. Эти кон­такты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благо­даря наличию таких контактов миокард, состоящий из отдельных клеток, работает как единое целое, представляя собой функциональный синцитий. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Возникнув в синусно-предсердном (синоатриальном) узле, возбуждение распро­страняется по предсердиям, достигая предсердно-желудочкового (атриовентрикуляр- ного) узла. В сердце теплокровных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Следует отметить, что скорость распространения возбуждения в этих проводящих путях не намного превосходит скорость распространения возбужде­ния по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокон Пурки- нье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки. Следовательно, атриовентрикулярная задержка обес­печивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и диф- фузно расположенных сердечных проводящих миоцитах достигает 4,5—5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т. е. син­хронно.

Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через пред- сер дно-желудочко’вьгй пучок (пучок Гиса), а распространялось по клеткам рабочего миокарда — диффузно, то период асинхронного сокращения продолжался значительно дольше, клетки миокарда вовлекались в сокращение не все сразу, а постепенно и желу­дочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологи­ческих свойств сердца: 1) ритмическую генерацию импульсов (потенциалов действия); 2) необходимую последовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

Рефрактерная фаза миокарда и экстрасистола

Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем потенциал действия скелетной мышцы). Во время потенциала действия мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Взаимоотношения между фазами потенциала действия миокарда и вели­чиной его возбудимости показаны на рис. 118. Различают период абсолютной рефрак­терности (продолжается 0,27 с, т. е. несколько короче длительности потенциала дейст­вия); период относительной рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбудимости, когда сердечная мышца может отве­чать сокращением и на подпороговые раздражения.

Сокращение (систола) миокарда продолжается около 0,3 с, что по времени при­мерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на другие раздражители и на повторные раздражители, следую-

Рис. 118. Соотношение измененийвозбуди­мости мышцы сердца и потенциала действия.

I — период а бс п.! ют ной рефрнктерноети; 2 пе­риод относительной рефрактерности; 3 — период су пер нормальности; 4 — л ер иол полного восста­новлении нормальной аозбудимости.

50 too 150 200 250 300 ЗЬО 400 ВреИя мс

щие с высокой частотой, отвечает только одиночными сокращениями. Наличие длитель­ной рефрактерной фазы препятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что было бы равнозначно остановке сердца.

Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость восстановлена, вызывает внеочередное сокращение сердца, так называе­мую экстрасистолу. Экстрасистолы могут появляться не только при искусственном раз­дражении миокарда, но и под влиянием различных патологических процессов, при эмо­циональном возбуждении и т. д. Наличие или отсутствие экстрасистол, а также их ха­рактер определяется при регистрации электрокардиограммы.

Охват возбуждением огромного количества клеток рабочего миокарда вызывает по­явление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позволяют регистрировать электрические потенциалы сердца с поверхности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнт- говеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии, а регистрируемые с ее помощью кривые называются электрокар­диограммами (ЭКГ). Электрокардиография широко применяется в медицине как диаг­ностический метод, позволяющий установить особенности нарушений сердечной деятель­ности.

Для исследований в настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллографами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помо­щи которых записывают ЭКГ во время активной мышечной деятельности и на рас­стоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние посредством радиосвязи. Таким способом реги­стрируют ЭКГ у спортсменов во время соревнований, у космонавтов в космическом по­лете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.

Вследствие определенного положения сердца в грудной клетке и своеобразной фор­мы тела человека электрические силовые линии, возникающие между возбужденными ( —) и невозбужденными ( + ) участками сердца, распределяются по поверхности тела неравномерно. Поэтому в зависимости от места приложения электродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потен­циалов от конечностей и поверхности грудной клетки. Чаще используются три, так назы­ваемых стандартных, отведения от конечностей (рис. 119). I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука —левая нога.

Рис. 120. Схема грудных отведений электро­кардиограммы н кривые, получаемые при Рис. 119. Наложение электродов при стандарт- этих отведениях,

ных отведениях электрокардиограммы и кривые,получаемые при этих отведениях (схема).

Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 120 точек, а другой — к правой руке. Вто­рым электродом могут служить три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, приложенный к трем конечностям, является индифферентным, или «нулевым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения, предложенные Вильсоном, называются униполярными, или однополюсными. Эти отведения обозначают латинской буквой V (Vb V2 и т. д.).

Нормальные ЭКГ человека, получаемые в стандартных отведениях, приведены на рис. 121.

На ЭКГ различают зубцы Р, Q, R, S и Т. Зубец Р представляет собой алгебраическую сумму электрических потенциалов, возникающих при возбуждении правого и левого предсердий. Комплекс зубцов QRST отражает электрические изменения, обусловленные возбуждением желудочков. Зубцы Q, R, S характеризуют начало возбуждения желудоч­ков, а зубец Т — конец. Интервал Р—Q отражает время, необходимое для проведения возбуждения от предсердий до желудочков. Сложная кривая, отражающая процесс воз­буждения желудочков, очевидно, объясняется тем, что это возбуждение охватывает же­лудочки не сразу. Полагают, что зубец Q обусловлен возбуждением внутренней поверх­ности желудочков, правой сосочковой мышцы и верхушки сердца, а зубец R — возбужде­нием поверхности и основания обоих желудочков. К окончанию зубца S оба желудочка целиком охвачены возбуждением, вся поверхность сердца стала электроотрицательной, и разность потенциалов между различными отделами миокарда исчезла. (Поэтому ин­тервал S — Т находится на изоэлектрической линии.)

Зубец Т отражает процессы реполяризации, т. е. восстановление нормального мем­бранного потенциала клеток миокарда. Эти процессы возникают в различных клетках не строго синхронно. Вследствие этого появляется разность потенциалов между участками, миокард которых еще деполяризован (т. е. обладает отрицательным зарядом), и участ­ками, восстановившими свой положительный заряд. Указанная разность потенциалов регистрируется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Интервал

Рис. 121. Схема связи между распространением возбуждения в сердце и возникновением некоторых зубцов электрокардиограммы (а) и электрокардиограммы в трех стандартных отведениях (б).

между зубцом Т и последующим зубцом Р соответствует периоду покоя сердца, т. е. общей паузе и пассивному наполнению камер сердца кровью.

Общая продолжительность электрической систолы желудочков, т. е. интервалы Q—Т, почти совпадают с длительностью механической систолы (механическая систола начинается несколько позже, чем электрическая).

Электрокардиография позволяет оценить характер нарушений проведения возбуж­дения в сердце, Так, по интервалу от начала зубца Р и до зубца Q можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной ско­ростью. В норме этот интервал равен 0,12—0,18 с. Общая продолжительность зубцов Q, R, S составляет от 0,06 до 0,09 с.

Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, соеди­няющую в каждый данный момент две точки, обладающие наибольшей разностью потен­циалов, принято называть электрической осью сердца. В каждый данный момент электри­ческая ось сердца характеризуется определенной величиной и направлением, т. е. об­ладает свойствами векторной величины. Вследствие неоднородности охвата возбужде­нием различных отделов миокарда этот вектор изменяет свое направление. Для кли­нической практики оказалась полезной регистрация не только величины разности по­тенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направ­ления электрической оси сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардио- граммы (ВЭКП (рис. 122).

Изменение ритма сердечной деятельности. Электрокардиография позволяет деталь­но анализировать изменения сердечного ритма. В норме частота сердечных сокращений колеблется от 60 до 80 в минуту, при более редком ритме — брадикардии — составляет 40—50, а при более частом — тахикардии — превышает 90—100 и доходит до 150 и более в минуту. Брадикардия часто регистрируется у спортсменов в состоянии покоя, а тахи­кардия — при интенсивной мышечной работе и эмоциональном возбуждении.

У молодых людей наблюдается регулярное изменение ритма сердечной деятельности в связи с дыханием — дыхательная аритмия. Она состоит в том, что в конце каждого
выдоха частота сокращений сердца замедляется. При неко­торых патологических состояниях сердца правильный ритм у. эпизодически или регулярно нарушается внеочередным со­кращением — экстрасистолой.

Экстрасистолы. Если внеочередное возбуждение воз­никает в синоатриальном узле в тот момент, когда рефрак­терный период закончился, но очередной автоматический импульс еще не появился, наступает раннее сокращение сердца — синусовая экстрасистола. Пауза, следующая за такой экстрасистолой, длится такое же время, как и обычная.

Внеочередное возбуждение, возникшее в миокарде ле­вого или правого желудочка, не отражается на автоматик синусно-предсердного (синоатриального) узла. Этот узел своевременно посылает очередной импульс, который дости­гает желудочков в тот момент, когда они еще находятся в рефрактерном состоянии после экстрасистольг; поэтому миокард желудочков не отвечает на очередной импульс, по­ступающий из предсердия. Затем рефрактерный период же­лудочков кончается и они опять могут ответить на раздра­жение, но проходит некоторое время, пока из синуса придет второй импульс. Таким образом, экстрасистола, вызванная возбуждением, возникшим в одном из желудочков (желу­дочковая экстрасистола), приводит к продолжительной, так называемой компенсаторной, паузе желудочков при неизменном ритме работы предсердий.

У человека экстрасистольг могут появиться при наличии очагов раздражения в самом миокарде, в области предсердного или желудочковых водителей ритма. Экстрасистолии могут способствовать влияния, поступающие в сердце из ЦНС.

Трепетание и мерцание сердца. В патологии можно наблюдать своеобразное состоя­ние мышцы предсердий или желудочков сердца, называемое трепетанием и мерцанием (фибрилляция).

В подобных случаях происходят чрезвычайно быстрые и асинхронные сокращения мышечных волокон предсердий или желудочков, до 400 (при трепетании) и до 600 (при мерцании) в минуту. Главный отличительный признак фибрилляции — неодновремен­ность сокращений отдельных мышечных волокон данного отдела сердца. При таком со­кращении мышцы предсердия или желудочки сердца не могут осуществлять нагнетание крови. У человека фибрилляция желудочков смертельна, если немедленно не принять меры для ее прекращения. Наиболее эффективным способом прекращения фибрилляции желудочков является воздействие сильным (напряжением в несколько киловольт) уда­ром электрического тока, по-видимому, вызывающим одновременно возбуждение мышеч­ных волокон желудочка, после чего восстанавливается синхронность их сокращений.

ЭКГ и ВЭКГ отражают изменения величины и направления потенциалов действия миокарда, но не позволяют оценить особенности нагнетательной функции сердца. Потен­циалы действия мембраны клеток миокарда представляют собой лишь пусковой механизм сокращения клеток миокарда, включающий определенную последовательность внутри­клеточных процессов, заканчивающихся укорочением миофибрилл. Эта серия последова­тельных процессов получила название сопряжения возбуждения и сокращения.

Сопряжение возбуждения и сокращения миокарда

Рис. 122. Вектор кард но грамма.
Х —

X i — вертикальная ось; У—У1 — горизонтальная ось: 1 — петля QRS; 2 — петля Т; 3 — — петля Р; 4 — угол, отделяю­щий расположение петли QRS в системе прямоугольных коорди­нат; 5 — угол расхождения меж­ду максимальными лекторами петель QRS и T; 6 — максималь­ный вектор петли QRS. Стрелка­ми указано направление движе­ния луча при записи петель QRS и Т против хода часовой стрелки.

Каждая миофибрилла сердечной (и скелетной) мышцы содержит нитевидные сокра­тительные белки актин и миозин, расположенные таким образом, что актиновые нити находятся в длинных каналах между миозиновыми. В состоянии расслабления актино-

Мышечное во лом но Рис. 123. Процесс сокращения миофибрилл(схема).

вые нити не заполняют эти каналы на всем протяжении, а входят лишь частично, несколь­ко выступая из них. Это приводит к увеличению общей длины миофибриллы (рис. 123).

Сокращение миофибрилл — это процесс, во время которого актиновые нити втяги­ваются в глубь промежутков между миозиновыми нитями, что приводит к укорочению миофибриллы. Скольжение актиновых нитей по каналам вдоль миозиновых нитей осу­ществляется вследствие энзимохимических реакций, запускаемых ионами СА 2+ . На по­верхности молекул белка актина находятся тонкие нити молекул белка тропомиозина, заканчивающиеся головкой, состоящей из молекулы тропонина (рис. 124).

Между толстыми миозиновыми и более тонкими актиновыми нитями существуют поперечные мостики, содержащие АТФ. Ионы Са 2+ , поступая в окончания тропомиозино- вых нитей, активируют тропонин и обеспечивают его способность формировать контакты поверхностей тонких и толстых нитей. При этом происходит распад АТФ и освобождаю­щаяся энергия используется на скольжение нитей относительно друг друга и сокращение миофибрилл. Необходимые для этого ионы Са 2+ поступают из цистерн саркоплазма- тического ретикулума, т. е. ячеистой сети каналов, пронизывающих саркоплазму мышеч­ных клеток. Часть ионов инициирующих сокращение миофибрилл, поступает в клетку из межклеточной жидкости по медленным натрий-кальциевым каналам мембраны клеток.

ON

Тонная нить

Толстая нить:
Рис. 124. Схема, иллюстрирующая взаимоотношения между актином, тропомиозином и миозином при мышечном сокращении.

Процесс расслабления миокарда начинается в результате связывания ионов Са 2+ во внутриклеточных депо (цистернах саркоплазматического ретикулума), а также вслед­ствие переноса ионов Са 2+ через клеточные мембраны в межклеточную жидкость.

источник

4). Электрокардиография (экг) как метод регистрации биопотенциалов

Живые ткани являются источником электрических потенциалов (биопотенциалов).

Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении, электромиография (ЭМГ) – метод регистрации биоэлектрической активности мышц, электроэнцефалография (ЭЭГ) – метод регистрации биоэлектрической активности головного мозга и др.

В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются.

В клиническом отношении это существенно упрощает саму процедуру регистрации, делая ее безопасной и несложной. Физический подход к электрографии заключается в создании (выборе) модели электрического генератора, которая соответствует картине «снимательных» потенциалов.

Все сердце в электрическом отношении представляется как некоторый электрический генератор в виде реального устройства и как совокупность электрических источников в проводнике, имеющем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на 34б поверхности тела человека. Моделировать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генератор. Дипольное представление о сердце лежит в основе теории отведений Эйнтхове-на. Согласно ей сердце есть таковой диполь с диполь-ным моментом, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла. В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой и левой руке и левой ноге.

По терминологии физиологов, разность биопотенциалов, регистрируемую между двумя точками тела, называют отведением. Различают I отведение (правая рука – левая рука), II отведение (правая рука – левая нога) и III отведение (левая рука – левая нога).

По В. Эйнтховену, сердце расположено в центре треугольника. Так как электрический момент диполя – сердца – изменяется со временем, то в отведениях будут получены временные напряжения, которые и называют электрокардиограммами. Электрокардиограмма не дает представления о пространственной ориентации. Однако для диагностических целей такая информация важна. В связи с этим применяют метод пространственного исследования электрического поля сердца, называемый вектор-кардиографией. Вектор-кардиограмма – геометрическое место точек, соответствующих концу вектора, положение которого изменяется за время сердечного цикла.

2)Основные отведения экг

ЭКГ — это запись разности потенциалов между двумя электродами, расположенными на поверхности тела. Совокупность двух таких электродов называют электрокардиографическим отведением, а воображаемую прямую, соединяющую два электрода, — осью данного отведения. Отведения могут быть двухполюсными и однополюсными. В двухполюсных отведениях потенциал меняется под обоими электродами. В однополюсных отведениях под одним (активным) электродом потенциал меняется, а под вторым (индифферентным) — нет.

Для регистрации ЭКГ индифферентный электрод получают, объединив вместе электроды от левой руки, правой руки и левой ноги; это так называемый нулевой электрод (объединенный электрод, центральная терминаль).

Обычно используют 12 отведений ( рис. 228.5 ). Их объединяют в две группы: шесть отведений от конечностей (их оси лежат во фронтальной плоскости) и шесть грудных отведений (оси — в горизонтальной плоскости).

Отведения от конечностей подразделяют на три двухполюсных (стандартные отведения I, II и III) и три однополюсных (усиленные отведения aVR, aVL и aVF).

В стандартных отведениях электроды накладывают следующим образом: I — левая рука и правая рука, II — левая нога и правая рука, III — левая нога и левая рука.

В усиленных отведениях активный электрод располагают: для отведения aVR — на правой руке (R — right), для отведения aVL — на левой руке (L — left), для отведения aVF — на левой ноге (F — foot). Буква «V» в названиях этих отведений обозначает, что измеряют значения потенциала (Foliage) под активным электродом, буква «а» — что этот потенциал усилен (Augmented).

Усиление достигается за счет того, что из нулевого электрода исключают тот электрод, который наложен на исследуемую конечность (например, в отведении aVF нулевым электродом служит объединенный электрод от правой руки и левой руки).

На правую ногу всегда накладывается заземляющий электрод.

Направление и полярность отведений от конечностей представлены на рис. 228.6 .

Чтобы получить грудные однополюсные отведения (см. рис. 228.7 ), электроды устанавливают в следующих точках:

— V1 — четвертое межреберье по правому краю грудины,

— V2 — четвертое межреберье по левому краю грудины,

— V4 — пятое межреберье по левой среднеключичной линии;

— V5 и V6 — на том же уровне по вертикали, что и V4, но, соответственно, по передней и средней подмышечной линии.

Индифферентным электродом служит обычный нулевой электрод.

ЭКГ в каждом отведении представляет собой проекцию суммарного вектора на ось данного отведения. Таким образом, разные отведения как бы позволяют взглянуть на электрические процессы в сердце под разными углами. Двенадцать отведений ЭКГ все вместе создают трехмерную картину электрической активности сердца; кроме них иногда используют дополнительные отведения. Так, для диагностики инфаркта правого желудочка используют правые грудные отведения V3R, V4R и другие. Пищеводные отведения позволяют выявить такие изменения электрической активности предсердий, которые не видны на обычной ЭКГ.

Для телеметрического мониторинга ЭКГ обычно используют одно, а для холтеровского — два модифицированных отведения.

Внутрисердечная ЭКГ и электрофизиологическое исследование сердца рассматриваются в гл. «Брадиаритмия » и » Тахиаритмия «.

Как уже говорилось, ЭКГ представляет собой проекцию суммарного вектора на ось отведения. Эти оси характеризуются не только направлением, но и полярностью: один электрод присоединяется к положительному полюсу электрокардиографа, другой — к отрицательному (рис. 228.5 и рис. 228.6 ). Если в некий момент времени суммарный вектор направлен в сторону положительного полюса, то кривая ЭКГ смещается вверх, а если в сторону отрицательного — вниз. Если же суммарный вектор направлен под прямым углом к оси данного отведения, то записывается изолиния.

3)Нормальная ЭКГ человека, ее генез, клиническое значение

Во время распространения возбуждения в миокарде сердце становится источником электрического тока, который проводится в окружающие ткани. Слабые токи проводятся также и на поверхность тела. Если поместить электроды на кожу в точках, расположенных по обе стороны от сердца, можно зарегистрировать разность потенциалов, связанную с проведением сердечного импульса, т.е. электрокардиограмму. Нормальная электрокардиограмма, соответствующая двум сердечным циклам. Нормальная электрокардиограмма состоит из зубца Р, комплекса QRS п зубца Т. Комплекс QRS, в свою очередь, состоит из отдельных зубцов Q, R и S. Зубец Р возникает при деполяризации предсердий, предшествующей их сокращению. Комплекс QRS связан с распространением волны деполяризации в миокарде желудочков, происходящим перед их сокращением. Таким образом, и зубец Р, и зубцы комплекса QRS являются отражением процессов деполяризации в сердце. Зубец Т возникает после деполяризации, т.е. во время восстановления потенциала покоя кардномиоцитов желудочков. Этот процесс продолжается от 0,25 до 0,35 сек после деполяризации. Таким образом, зубец Т является отражением процессов реполяризации в миокарде желудочков. Следовательно, зубцы электрокардиограммы характеризуют как деполяризацию, так и реполярнзащпо, происходящую в сердце. Однако различия между этими явлениями настолько важны для понимания электрокардиографии, что необходимо дать некоторые пояснения. На рисунке мы видим четыре стадии развития деполяризации и реполяризации в одиночном мпокардиальном волокне. Вследствие деполяризации и инверсии мембранного потенциала отрицательно заряженная внутренняя поверхность мембраны становится положительно заряженной, а наружная поверхность — отрицательно заряженной. Картина ЭКГ значительно меняется в течение дня. К примеру, проведение лазерной эпиляции может привести к столь значительным изменениям электрокардиограммы, что неопытному врачу может показаться наличие нестабильной стенокардии напряжения или даже инфаркта миокарда. Поэтому такие процедуры, как лазерная эпиляция должны проводится задолго до снятия электрокардиограммы или вовсе следует воздержаться от эпиляции до посещения кардиолога. На рисунке волна деполяризации (положительные заряды внутри и отрицательные заряды снаружи волокна обозначены красным цветом) распространяется слева направо. Начальная часть волокна уже деполяризована, а остальная часть волокна еще сохраняет потенциал покоя. Следовательно, левый электрод расположен вблизи волокна в отрицательно заряженной зоне, а правый — в положи гельпо заряженной зоне. Справа на рисунке показано изменение разницы потенциалов, зарегистрированное между двумя электродами. Обратите внимание, что в момент, когда волна деполяризации проходит половину межэлектродного расстояния, разность потенциалов между электродами достигает максимума. На рисунке деполяризация охватила все миокардиальное волокно. Кривая в правой части рисунка вернулась к исходному нулевому уровню, т.к. в это время оба электрода расположены в зоне одинаково отрицательного заряда. Таким образом, смещение кривой в положительную сторону от нулевого уровня представляет собой волну деполяризации и отражает скорость распространения деполяризации вдоль мембраны мышечного волокна. На рисунке волна реполяризации (отрицательные заряды внутри и положительные заряды снаружи волокна обозначены черным цветом) распространяется слева направо. В это время левый электрод расположен в положительно заряженной зоне, а правый— в отрицательно заряженной зоне. Поскольку полярность электродов по сравнению с рисунке изменилась, мы наблюдаем смещение кривой в отрицательную сторону от нулевого уровня. На рисунке волокно миокарда полностью реполяризовано. Оба электрода расположены в зоне положительного заряда, разность потенциалов между ними отсутствует, поэтому кривая в правой части рисунка вернулась к исходному нулевому уровню. Таким образом, смещение кривой в отрицательную сторону представляет собой волну реполяризации и отражает скорость распространения реполяризации вдоль мембраны мышечного волокна. Связь между монофазным потенциалом действия кардиомиоцита желудочков и волнами QRS и Т-стандартной электрокардиограммы. Монофазный потенциал действия миокардиального волокна желудочков, обычно продолжается от 0,25 до 0,35 сек. В верхней части рисунка представлен такой потенциал, зарегистрированный с помощью микроэлектрода, введенного внутрь волокна. Скачок потенциала вызван деполяризацией мембраны, а возврат потенциала к исходному уровню вызван ее реполяризацией. В нижней части рисунка показана электрокардиограмма, записанная одновременно с потенциалами действия в том же желудочке сердца. Обратите внимание, что комплекс QRS и монофазный потенциал действия начинаются одновременно, а зубец Т появляется в конце потенциала действия во время реполяризации. Особо отметьте, что изменений потенциала на электрокардиограмме нет и при отсутствии деполяризации миокарда, и при полностью деполяризованном миокарде желудочков. Только частичная поляризация или деполяризация миокарда становится причиной появления ионных токов, идущих от одного участка миокарда к другому. Именно это приводит к появлению электрических потенциалов на поверхности тела и формированию электрокардиограммы.

Источник: http://meduniver.com/Medical/Physiology/553.html MedUniver

4)Основные показатели деятельности сердца:

Систолический, или ударный, объем сердца -это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении. Величина систолического объема зависит от размеров сердца, состояния миокарда и организма. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл. Таким образом, при сокращении желудочков в артериальную систему поступает 120-160 мл крови.Минутный объем сердца -это количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин. Минутный объем сердца — это произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л.Систолический и минутный объем сердца характеризует деятельность всего аппарата кровообращения.

5)Тоны сердца,верхушечный толчок, их происхождение и характеристика.

Во время сокращений сердца возникают звуковые эффекты, которые выслушиваются методом аускультации и называются сердечными тонами. Их появление связано с колебанием стенок сосудов, сердечных клапанов, движением тока крови во время сердечных сокращений, с колебаниями стенок миокарда. В норме выслушиваются I и II тоны сердца.

I тон сердца (систолический) состоит из нескольких компонентов. Исходя из этого тон называется клапанно-мышечно-сосудистым. Четвертый компонент тона предсердный. Предсердный компонент связан с колебаниями стенок предсердий во время их систолы, при выталкивании крови в желудочки. Этот компонент является первым составляющим первого тона, он сливается со следующими компонентами. Клапанный компонент тона связан со звуковыми эффектами, возникающими во время движения атриовентрикулярных клапанов в систолу желудочков. Во время систолы давление в желудочках повышается, и закрываются предсердно-желудочковые клапаны. Мышечный компонент связан со звуковыми эффектами, возникающими в результате колебания стенок желудочков во время их сокращения. Систола желудочков направлена на выталкивание объема крови, содержащегося в них в аорту (левый желудочек) и легочный ствол (правый желудочек). Движение крови под высоким давлением вызывает колебание стенок крупных сосудов (аорты и легочного ствола) и сопровождается звуковыми эффектами, также составляющими первый тон.

II тон двухкомпонентный. Он состоит из клапанного и сосудистого компонентов. Этот тон выслушивается во время диастолы (диастолический). Во время диастолы желудочков происходит захлопывание клапанов аорты и легочного ствола, при колебании этих клапанов возникают звуковые эффекты.

Движение крови в сосуды также сопровождается звуковым компонентом II тона.

III тон не является обязательными выслушивается у лиц молодого возраста, а также имеющих недостаточное питание. Он возникает в результате колебания стенок желудочков в их диастолу во время наполнения их кровью.

IV тон возникает непосредственно перед первым тоном. Причиной его появления является колебания стенок желудочков во время их наполнения во время диастолы.

Сила тонов сердца определяется близостью расположения сердечных клапанов относительно передней грудной стенки (поэтому ослабление тонов сердца может быть связано с увеличением толщины передней грудной стенки за счет подкожно-жировой клетчатки). Кроме этого, ослабление тонов сердца может быть связано с другими причинами, вызывающими нарушение проведения звуковых колебаний на грудную стенку. Это повышение воздушности легких при эмфиземе, интенсивное развитии мышц передней грудной стенки, пневмоторакс, гемоторакс, гидроторакс. У молодых худощавых людей при анемии звучность тонов усиливается. Это также возможно за счет явления резонанса при появлении каверны легкого.

Верхушечный толчок — это ограниченная ритмичная пульсация, наблюдаемая в пятом межреберье кнутри от средне-ключичной линии, в области верхушки сердца. Верхушечный толчок присутствует всегда, независимо от того, больной человек или здоровый.

Верхушечный толчок шириной более 2-х см, называется разлитым и связан с увеличением границ сердца, менее 2-х см — ограниченным (может быть при ожирении, эмфиземе легких, отеке подкожной клетчатки). Высота верхушечного толчка — это амплитуда колебания грудной стенки (может быть высокий и низкий толчок). Сила верхушечного толчка определяется давлением, которое ощущают пальцы. Она зависит от силы сокращения левого желудочка, от толщины грудной клетки. Усиленный верхушечный толчок, как правило, выявляется при гипертрофии левого желудочка.

6)Внутрисердечные механизмы регуляции сердца

Внутриклеточные механизмы регуляции. Электронная микро­скопия позволила установить, что миокард не является синцитием, а состоит из отдельных клеток — миоцитов, соединяющихся между собой вставочными дисками. В каждой клетке действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется соб­ственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования.

При увеличении нагрузки на сердце (например, при регулярной мышечной деятельности) синтез сократительных белков миокарда и структур, обеспечивающих их деятельность, усиливается. Появ­ляется так называемая рабочая (физиологическая) гипертрофия мио­карда, наблюдающаяся у спортсменов.

Внутриклеточные механизмы регуляции обеспечивают и изме­нение интенсивности деятельности миокарда в соответствии с ко­личеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка—Старлинга): сила сокра­щения сердца (миокарда) пропорциональна степени его кровена­полнения в диастолу (степени растяжения), т. е. исходной длине его мышечных волокон. Более сильное растяжение миокарда в мо­мент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми иитями, а значит, растет количество резервных мостиков, т. е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артери­альную систему то количество крови, которое притекает к нему из вен. Такой тип миогенной регуляции сократимости миокарда полу­чил название гетерометрической (т. е. зависимой от переменной величины — исходной длины волокон миокарда) регуляции. Под гомеометрической регуляцией принято понимать изменения силы сокращений при неменяющейся исходной длине волокон миокарда. Это прежде всего ритмозависимые изменения силы сокращений. Если стимулировать полоску миокарда при равном растяжении с все увеличивающейся частотой, то можно наблюдать увеличение силы каждого последующего сокращения («лестница» Боудича). В ка­честве теста на гомеометрическую регуляцию используют также пробу Анрепа — резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в опре­деленных границах силы сокращений миокарда. При проведении пробы выделяют две фазы. Вначале при увеличении сопротивления выбросу крови растет конечный диастолический объем и увеличение силы сокращений реализуется по гетерометрическому механизму. На втором этапе конечный диастолический объем стабилизируется и возрастание силы сокращений определяется гомеометрическим механизмом.

Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто меха­ническую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи — нексусы, или тес­ные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбужде­нию клеток миокарда и появлению сердечных аритмий.

К межклеточным взаимодействиям следует отнести и взаимоот­ношения кардиомиоцитов с соединительнотканными клетками мио­карда. Последние представляют собой не просто механическую опор­ную структуру. Они поставляют для сократительных клеток мио­карда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Подобный тип межклеточных взаимодействий получил название креаторных связей (Г. И. Косицкий).

Внутрисердечные периферические рефлексы. Более высокий уро­вень внутриорганной регуляции деятельности сердца представлен внутрисердечными нервными механизмами. Обнаружено, что в серд­це возникают так называемые периферические рефлексы, дуга кото­рых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. После гомотрансплантации сердца теплокровных животных и дегене­рации всех нервных элементов экстракардиального происхождения в сердце сохраняется и функционирует внутриорганная нервная систе­ма, организованная по рефлекторному принципу. Эта система вклю­чает афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синаптическими связями, образуя внутри-сердечные рефлекторные дуги.

В экспериментах показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокра­щений миокарда левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непос­редственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществ­ляются с помощью внутрисердечных периферических рефлексов (Г. И. Косицкий).

Подобные реакции наблюдаются лишь на фоне низкого исход­ного кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда, в аорту выбрасы­вается меньшее количество крови, а приток крови из вен затруд­няется. Подобные реакции играют важную роль в регуляции кро­вообращения, обеспечивая стабильность кровенаполнения артери­альной системы.

Гетерометрический и гомеометрический механизмы регуляции силы сокращения миокарда могут привести лишь к резкому уве­личению энергии сердечного сокращения в случае внезапного по­вышения притока крови из вен или повышения артериального давления. Казалось бы, что при этом артериальная система не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нер­вной системы.

Переполнение камер сердца притекающей кровью (равно как и значительное повышение давления крови в устье аорты, коро­нарных сосудов) вызывает снижение силы сокращений миокарда посредством внутрисердечных периферических рефлексов. Сердце при этом выбрасывает в артерии в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе.

Опасность для организма представляло бы и уменьшение сер­дечного выброса, что могло бы вызвать критическое падение арте­риального давления. Такую опасность также предупреждают регуляторные реакции внутрисердечной системы.

Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внут­рисердечных рефлексов. При этом желудочки в момент систолы выбрасывают в аорту большее, чем в норме, количество содер­жащейся в них крови. Это и предотвращает опасность недоста­точного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, коли­чество крови, что способствует усилению притока венозной крови к сердцу.

В естественных условиях внутрисердечная нервная система не является автономной. Она — лишь низшее звено сложной иерархии нервных механизмов, регулирующих деятельность сердца. Следу­ющим, более высоким звеном этой иерархии являются сигналы, поступающие по блуждающим и симпатическим нервам, осуще­ствляющие процессы экстракардиальной нервной регуляции сердца.

источник